Sciact
Toggle navigation
  • EN
  • RU

Sections:

  • Articles
  • Books
  • Conference attendances
  • Conference theses
  • Patents

Articles (41)

# Публикация
1 Antontsev S.N. , Kuznetsov I.V. , Prokudin D.A. , Sazhenkov S.A.
The impulsive Kelvin--Voigt equations for two-component mixtures of viscoelastic fluids
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2025. V.22. N1. P.563-586. DOI: 10.33048/semi.2025.22.038 WOS
2 Antontsev S.N. , Kuznetsov I.V. , Sazhenkov S.A. , Shmarev S.
Strong solutions of a semilinear impulsive pseudoparabolic equation with an infinitesimal initial layer
Journal of Mathematical Analysis and Applications. 2024. V.530. N1. 127751 :1-22. DOI: 10.1016/j.jmaa.2023.127751 WOS Scopus РИНЦ OpenAlex
3 Антонцев С.Н. , Кузнецов И.В. , Саженков С.А.
ИМПУЛЬСНЫЕ УРАВНЕНИЯ КЕЛЬВИНА–ФОЙГТА ДИНАМИКИ НЕСЖИМАЕМОЙ ВЯЗКОУПРУГОЙ ЖИДКОСТИ
Прикладная механика и техническая физика. 2024. Т.65. №5. С.28-42. DOI: 10.15372/PMTF202415472 РИНЦ OpenAlex
4 Antontsev S. , Kuznetsov I. , Sazhenkov S. , Shmarev S.
Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer
Nonlinear Analysis: Real World Applications. 2024. V.80. 104162 :1-23. DOI: 10.1016/j.nonrwa.2024.104162 WOS Scopus РИНЦ OpenAlex
5 Антонцев С.Н. , Кузнецов И.В.
УРАВНЕНИЯ КЕЛЬВИНА ̶ ФОЙГТА СО СКАЧКООБРАЗНЫМ ПРОФИЛЕМ ПЛОТНОСТИ
Прикладная механика и техническая физика. 2024. DOI: 10.15372/PMTF202415504 РИНЦ
6 Antontsev S.N. , Khompysh K.
Inverse Problems for Heat Convection System for Incompressible Viscoelastic Fluids
Lobachevskii Journal of Mathematics. 2024. V.45. N4. P.1349-1365. DOI: 10.1134/s1995080224601152 WOS Scopus РИНЦ OpenAlex
7 Antontsev S.N. , Kuznetsov I.V. , Sazhenkov S.A.
KELVIN–VOIGT IMPULSE EQUATIONS OF INCOMPRESSIBLE VISCOELASTIC FLUID DYNAMICS
Journal of Applied Mechanics and Technical Physics. 2024. N5.
8 Antontsev S.N. , Aitzhanov S.E. , Zhanuzakova D.T.
An initial boundary value problem for a pseudoparabolic equation with a nonlinear boundary condition
Mathematical Methods in the Applied Sciences. 2023. V.46. N1. P.1111-1136. DOI: 10.1002/mma.8568 WOS Scopus РИНЦ OpenAlex
9 Antontsev S. , Kuznetsov I. , Shmarev S.
Blow-up for a pseudo-parabolic equation with variable nonlinearity depending on (x,t) and negative initial energy
Nonlinear Analysis: Real World Applications. 2023. V.71. 103837 :1-15. DOI: 10.1016/j.nonrwa.2023.103837 WOS Scopus РИНЦ OpenAlex
10 Antontsev S. , Kuznetsov I. , Shmarev S.
Global existence and regularity for a pseudo-parabolic equation with p(x,t)-Laplacian
Journal of Mathematical Analysis and Applications. 2023. V.526. N1. 127202 :1-33. DOI: 10.1016/j.jmaa.2023.127202 WOS Scopus РИНЦ OpenAlex
11 Antontsev S.N. , Khompysh K.
Inverse problems for a Boussinesq system for incompressible viscoelastic fluids
Mathematical Methods in the Applied Sciences. 2023. V.46. N9. P.11130-11156. DOI: 10.1002/mma.9172 WOS Scopus РИНЦ OpenAlex
12 Antontsev S. , Kuznetsov I. , Sazhenkov S.
ONE-DIMENSIONAL IMPULSIVE PSEUDOPARABOLIC EQUATION WITH CONVECTION AND ABSORPTION
Interfacial Phenomena and Heat Transfer. 2023. V.11. N4. 17-33 :1-1. DOI: 10.1615/interfacphenomheattransfer.2023049787 WOS Scopus РИНЦ OpenAlex
13 Antontsev S.N. , Aitzhanov S.E. , Ashurova G.R.
An inverse problem for the pseudo-parabolic equation with p-Laplacian
Evolution Equations and Control Theory. 2022. V.11. N2. P.399-414. DOI: 10.3934/eect.2021005 Scopus РИНЦ OpenAlex
14 Antontsev S.N. , de Oliveira H.B.
Cauchy problem for the Navier–Stokes–Voigt model governing nonhomogeneous flows
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2022. V.116. N4. 158 :1-23. DOI: 10.1007/s13398-022-01300-x WOS Scopus РИНЦ OpenAlex
15 Antontsev S.N. , de Oliveira H.B. , Khompysh K.
Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping
Nonlinear Differential Equations and Applications. 2022. V.29. N5. 60 . DOI: 10.1007/s00030-022-00794-z WOS Scopus РИНЦ OpenAlex
16 Antontsev S.N. , Khompysh K.
An inverse problem for generalized Kelvin–Voigt equation with p-Laplacian and damping term
Inverse Problems. 2021. V.37. N8. P.085012. DOI: 10.1088/1361-6420/ac1362 WOS Scopus РИНЦ OpenAlex
17 Antontsev S.N. , de Oliveira H.B. , Khompysh K.
The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity
Nonlinearity. 2021. V.34. N5. P.3083-3111. DOI: 10.1088/1361-6544/abe51e WOS Scopus РИНЦ OpenAlex
18 Antontsev S. , de Oliveira H.B. , Khompysh K.
Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior
Asymptotic Analysis. 2021. V.121. N2. P.125-157. DOI: 10.3233/asy-201597 WOS Scopus РИНЦ OpenAlex
19 Antontsev S.N. , Ferreira J. , Pişkin E. , Yüksekkaya H. , Shahrouzi M.
Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents
Electronic Journal of Differential Equations. 2021. V.2021. N84. P.1-20. DOI: 10.22541/au.160975791.14681913/v1 РИНЦ OpenAlex
20 Antontsev S.N. , Papin А.А. , Tokareva M.A. , Leonova E.I. , Gridushko E.A.
МОДЕЛИРОВАНИЕ ВОЗНИКНОВЕНИЯ ОПУХОЛЕЙ - II
Известия Алтайского государственного университета / Izvestiya of Altai State University. 2021. №1(117). С.72-83. DOI: 10.14258/izvasu(2021)1-12 РИНЦ OpenAlex

  • « Previous
  • 1
  • 2
  • 3
  • Next  »
1   /  3   -  Total 41 records

Filter

Order

Field Direction

Columns

Reset