1
|
Antontsev S.N.
, Kuznetsov I.V.
, Sazhenkov S.A.
, Shmarev S.
Strong solutions of a semilinear impulsive pseudoparabolic equation with an infinitesimal initial layer
Journal of Mathematical Analysis and Applications. 2024.
V.530. N1. 127751
:1-22. DOI: 10.1016/j.jmaa.2023.127751
WOS
Scopus
РИНЦ
OpenAlex
|
2
|
Антонцев С.Н.
, Кузнецов И.В.
, Саженков С.А.
ИМПУЛЬСНЫЕ УРАВНЕНИЯ КЕЛЬВИНА–ФОЙГТА ДИНАМИКИ НЕСЖИМАЕМОЙ ВЯЗКОУПРУГОЙ ЖИДКОСТИ
Прикладная механика и техническая физика. 2024.
Т.65. №5. С.28-42. DOI: 10.15372/PMTF202415472
РИНЦ
OpenAlex
|
3
|
Antontsev S.
, Kuznetsov I.
, Sazhenkov S.
, Shmarev S.
Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer
Nonlinear Analysis: Real World Applications. 2024.
V.80. 104162
:1-23. DOI: 10.1016/j.nonrwa.2024.104162
WOS
Scopus
РИНЦ
OpenAlex
|
4
|
Антонцев С.Н.
, Кузнецов И.В.
УРАВНЕНИЯ КЕЛЬВИНА ̶ ФОЙГТА СО СКАЧКООБРАЗНЫМ ПРОФИЛЕМ ПЛОТНОСТИ
Прикладная механика и техническая физика. 2024.
DOI: 10.15372/PMTF202415504
РИНЦ
|
5
|
Antontsev S.N.
, Khompysh K.
Inverse Problems for Heat Convection System for Incompressible Viscoelastic Fluids
Lobachevskii Journal of Mathematics. 2024.
V.45. N4. P.1349-1365. DOI: 10.1134/s1995080224601152
РИНЦ
|
6
|
Antontsev S.N.
, Aitzhanov S.E.
, Zhanuzakova D.T.
An initial boundary value problem for a pseudoparabolic equation with a nonlinear boundary condition
Mathematical Methods in the Applied Sciences. 2023.
V.46. N1. P.1111-1136. DOI: 10.1002/mma.8568
WOS
Scopus
РИНЦ
OpenAlex
|
7
|
Antontsev S.
, Kuznetsov I.
, Shmarev S.
Blow-up for a pseudo-parabolic equation with variable nonlinearity depending on (x,t) and negative initial energy
Nonlinear Analysis: Real World Applications. 2023.
V.71. 103837
:1-15. DOI: 10.1016/j.nonrwa.2023.103837
WOS
Scopus
РИНЦ
OpenAlex
|
8
|
Antontsev S.
, Kuznetsov I.
, Shmarev S.
Global existence and regularity for a pseudo-parabolic equation with p(x,t)-Laplacian
Journal of Mathematical Analysis and Applications. 2023.
V.526. N1. 127202
:1-33. DOI: 10.1016/j.jmaa.2023.127202
WOS
Scopus
РИНЦ
OpenAlex
|
9
|
Antontsev S.N.
, Khompysh K.
Inverse problems for a Boussinesq system for incompressible viscoelastic fluids
Mathematical Methods in the Applied Sciences. 2023.
V.46. N9. P.11130-11156. DOI: 10.1002/mma.9172
WOS
Scopus
РИНЦ
OpenAlex
|
10
|
Antontsev S.
, Kuznetsov I.
, Sazhenkov S.
ONE-DIMENSIONAL IMPULSIVE PSEUDOPARABOLIC EQUATION WITH CONVECTION AND ABSORPTION
Interfacial Phenomena and Heat Transfer. 2023.
V.11. N4. 17-33
:1-1. DOI: 10.1615/interfacphenomheattransfer.2023049787
Scopus
РИНЦ
OpenAlex
|
11
|
Antontsev S.N.
, Aitzhanov S.E.
, Ashurova G.R.
An inverse problem for the pseudo-parabolic equation with p-Laplacian
Evolution Equations and Control Theory. 2022.
V.11. N2. P.399-414. DOI: 10.3934/eect.2021005
Scopus
РИНЦ
OpenAlex
|
12
|
Antontsev S.N.
, de Oliveira H.B.
Cauchy problem for the Navier–Stokes–Voigt model governing nonhomogeneous flows
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2022.
V.116. N4. 158
:1-23. DOI: 10.1007/s13398-022-01300-x
WOS
Scopus
РИНЦ
OpenAlex
|
13
|
Antontsev S.N.
, de Oliveira H.B.
, Khompysh K.
Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping
Nonlinear Differential Equations and Applications. 2022.
V.29. N5. 60
. DOI: 10.1007/s00030-022-00794-z
WOS
Scopus
РИНЦ
OpenAlex
|
14
|
Antontsev S.N.
, Ferreira J.
, Piskin E.
Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities
Electronic Journal of Differential Equations. 2021.
V.2021. N06. P.1-18.
РИНЦ
OpenAlex
|
15
|
Antontsev S.N.
, Ferreira J.
, Pişkin E.
, Cordeiro S.M.S.
Existence and non-existence of solutions for Timoshenko-type equations with variable exponents
Nonlinear Analysis: Real World Applications. 2021.
V.61. P.103341. DOI: 10.1016/j.nonrwa.2021.103341
WOS
Scopus
РИНЦ
OpenAlex
|
16
|
Antontsev S.N.
, Khompysh K.
An inverse problem for generalized Kelvin–Voigt equation with p-Laplacian and damping term
Inverse Problems. 2021.
V.37. N8. P.085012. DOI: 10.1088/1361-6420/ac1362
WOS
Scopus
РИНЦ
OpenAlex
|
17
|
Antontsev S.N.
, de Oliveira H.B.
, Khompysh K.
The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity
Nonlinearity. 2021.
V.34. N5. P.3083-3111. DOI: 10.1088/1361-6544/abe51e
WOS
Scopus
РИНЦ
OpenAlex
|
18
|
Antontsev S.
, de Oliveira H.B.
, Khompysh K.
Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior
Asymptotic Analysis. 2021.
V.121. N2. P.125-157. DOI: 10.3233/asy-201597
WOS
Scopus
РИНЦ
OpenAlex
|
19
|
Antontsev S.N.
, Ferreira J.
, Pişkin E.
, Yüksekkaya H.
, Shahrouzi M.
Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents
Electronic Journal of Differential Equations. 2021.
V.2021. N84. P.1-20. DOI: 10.22541/au.160975791.14681913/v1
РИНЦ
OpenAlex
|
20
|
Antontsev S.N.
, Papin А.А.
, Tokareva M.A.
, Leonova E.I.
, Gridushko E.A.
МОДЕЛИРОВАНИЕ ВОЗНИКНОВЕНИЯ ОПУХОЛЕЙ - II
Известия Алтайского государственного университета / Izvestiya of Altai State University. 2021.
№1(117). С.72-83. DOI: 10.14258/izvasu(2021)1-12
РИНЦ
OpenAlex
|