Sciact
  • EN
  • RU

ONE-DIMENSIONAL IMPULSIVE PSEUDOPARABOLIC EQUATION WITH CONVECTION AND ABSORPTION Full article

Journal Interfacial Phenomena and Heat Transfer
ISSN: 2169-2785
Output data Year: 2023, Volume: 11, Number: 4, Article number : 17-33, Pages count : 1 DOI: 10.1615/interfacphenomheattransfer.2023049787
Tags PSEUDOPARABOLIC EQUATION, IMPULSIVE EQUATION, INITIAL LAYER, CONVECTION, ABSORPTION
Authors Antontsev Stanislav 1 , Kuznetsov Ivan 1,2 , Sazhenkov Sergey 1,2
Affiliations
1 Lavrentyev Institute of Hydrodynamics
2 Altai State University

Funding (2)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010
2 Министерство науки и высшего образования Российской Федерации FZMW-2020-0008

Abstract: We study the initial-boundary value problem for the one-dimensional Oskolkov pseudoparabolic equation of viscoelasticity with a nonlinear convective term and a linear absorption term. The absorption term depends on a positive integer parameter n and, as n → + ∞, converges weakly * to the expression incorporating the Dirac deltafunction, which models an instant absorption at the initial moment of time. We prove that the infinitesimal initial layer, associated with the Dirac delta function, is formed as n → + ∞, and that the family of regular weak solutions of the original problem converges to the strong solution of a two-scale microscopic-macroscopic model. The main novelty of the article consists of taking into account of the effect of convection. In the final section, some possible generalizations and applications are briefly discussed, in particular with regard to active fluids.
Cite: Antontsev S. , Kuznetsov I. , Sazhenkov S.
ONE-DIMENSIONAL IMPULSIVE PSEUDOPARABOLIC EQUATION WITH CONVECTION AND ABSORPTION
Interfacial Phenomena and Heat Transfer. 2023. V.11. N4. 17-33 :1-1. DOI: 10.1615/interfacphenomheattransfer.2023049787 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85180824061
Elibrary: 61477305
OpenAlex: W4387046937
Citing: Пока нет цитирований
Altmetrics: