Sciact
  • EN
  • RU

Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer Full article

Journal Nonlinear Analysis: Real World Applications
ISSN: 1468-1218
Output data Year: 2024, Volume: 80, Article number : 104162, Pages count : 23 DOI: 10.1016/j.nonrwa.2024.104162
Tags p-parabolic equation, Variable nonlinearity, Impulsive partial differential equation, Initial layer
Authors Antontsev Stanislav 1 , Kuznetsov Ivan 1,2 , Sazhenkov Sergey 1,2 , Shmarev Sergey 3
Affiliations
1 Lavrentyev Institute of Hydrodynamics
2 Altai State University
3 University of Oviedo

Funding (2)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010
2 Министерство науки и высшего образования Российской Федерации FZMW-2020-0008

Abstract: We study the multi-dimensional Cauchy–Dirichlet problem for the ( , )-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the ( , )-growth. The minor term depends on a positive integer parameter and, as → +∞, converges weakly⋆ to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as → +∞, and that the family of regular weak solutions of the original problem converges to the so-called ‘strongweak’ solution of a two-scale microscopic macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the ( , )-parabolic equation provided with the corrected initial data.
Cite: Antontsev S. , Kuznetsov I. , Sazhenkov S. , Shmarev S.
Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer
Nonlinear Analysis: Real World Applications. 2024. V.80. 104162 :1-23. DOI: 10.1016/j.nonrwa.2024.104162 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 2, 2023
Accepted: Jun 11, 2024
Published online: Jun 25, 2024
Identifiers:
Web of science: WOS:001260454300001
Scopus: 2-s2.0-85196715548
Elibrary: 68356520
OpenAlex: W4399995100
Citing: Пока нет цитирований
Altmetrics: