Sciact
  • EN
  • RU

Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer Научная публикация

Журнал Nonlinear Analysis: Real World Applications
ISSN: 1468-1218
Вых. Данные Год: 2024, Том: 80, Номер статьи : 104162, Страниц : 23 DOI: 10.1016/j.nonrwa.2024.104162
Ключевые слова p-parabolic equation, Variable nonlinearity, Impulsive partial differential equation, Initial layer
Авторы Antontsev Stanislav 1 , Kuznetsov Ivan 1,2 , Sazhenkov Sergey 1,2 , Shmarev Sergey 3
Организации
1 Lavrentyev Institute of Hydrodynamics
2 Altai State University
3 University of Oviedo

Информация о финансировании (2)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010
2 Министерство науки и высшего образования Российской Федерации FZMW-2020-0008

Реферат: We study the multi-dimensional Cauchy–Dirichlet problem for the ( , )-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the ( , )-growth. The minor term depends on a positive integer parameter and, as → +∞, converges weakly⋆ to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as → +∞, and that the family of regular weak solutions of the original problem converges to the so-called ‘strongweak’ solution of a two-scale microscopic macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the ( , )-parabolic equation provided with the corrected initial data.
Библиографическая ссылка: Antontsev S. , Kuznetsov I. , Sazhenkov S. , Shmarev S.
Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer
Nonlinear Analysis: Real World Applications. 2024. V.80. 104162 :1-23. DOI: 10.1016/j.nonrwa.2024.104162 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 2 окт. 2023 г.
Принята к публикации: 11 июн. 2024 г.
Опубликована online: 25 июн. 2024 г.
Идентификаторы БД:
Web of science: WOS:001260454300001
Scopus: 2-s2.0-85196715548
РИНЦ: 68356520
OpenAlex: W4399995100
Цитирование в БД: Пока нет цитирований
Альметрики: