Sciact
  • EN
  • RU

KELVIN–VOIGT IMPULSE EQUATIONS OF INCOMPRESSIBLE VISCOELASTIC FLUID DYNAMICS Full article

Journal Journal of Applied Mechanics and Technical Physics
ISSN: 0021-8944
Output data Year: 2024, Number: 5,
Tags impulse partial differential equations, Kelvin-Voigt fluid, convection, initial layer
Authors Antontsev Stanislav Nikolaevich 1 , Kuznetsov Ivan Vladimirovich 1,2 , Sazhenkov Sergey Aleksandrovich 1,2
Affiliations
1 Lavrentyev Institute of Hydrodynamics
2 Altai State University

Abstract: This paper describes a multidimensional initial-boundary-value problem for Kelvin-Voigt equations for a viscoelastic fluid with a nonlinear convective term and a linear impulse term, which is a regular junior term describing impulsive phenomena. The impulse term depends on an integer positive parameter n , and, as n → +∞, weakly converges to an expression that includes the Dirac delta function that simulates impulse phenomena at the initial time. It is proven that, as n → +∞ an infinitesimal initial layer associated with the Dirac delta function is formed and the family of regular weak solutions of the initial-boundary value problem converges to a strong solution of a two-scale micro- and macroscopic model.
Cite: Antontsev S.N. , Kuznetsov I.V. , Sazhenkov S.A.
KELVIN–VOIGT IMPULSE EQUATIONS OF INCOMPRESSIBLE VISCOELASTIC FLUID DYNAMICS
Journal of Applied Mechanics and Technical Physics. 2024. N5.
Original: Антонцев С.Н. , Кузнецов И.В. , Саженков С.А.
ИМПУЛЬСНЫЕ УРАВНЕНИЯ КЕЛЬВИНА–ФОЙГТА ДИНАМИКИ НЕСЖИМАЕМОЙ ВЯЗКОУПРУГОЙ ЖИДКОСТИ
Прикладная механика и техническая физика. 2024. Т.65. №5. С.28-42. DOI: 10.15372/PMTF202415472 РИНЦ OpenAlex
Identifiers: No identifiers
Citing: Пока нет цитирований