Sciact
  • EN
  • RU

Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping Full article

Journal Nonlinear Differential Equations and Applications
ISSN: 1021-9722
Output data Year: 2022, Volume: 29, Number: 5, Article number : 60, Pages count : DOI: 10.1007/s00030-022-00794-z
Tags Anisotropic PDEs; Existence; Kelvin-Voigt equations; Large time behavior; Nonhomogeneous and incompressible fluids; Power-laws
Authors Antontsev S.N. 1,2 , de Oliveira H.B. 1,3,4 , Khompysh Kh. 5
Affiliations
1 University of Lisbon
2 Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia
3 Universidade do Algarve
4 Universidade Federal de Santa Catarina
5 Al-Farabi Kazakh National University

Funding (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Abstract: In this work, we consider the nonlinear initial-boundary value problem posed by the Kelvin-Voigt equations for non-homogeneous and incompressible fluid flows with fully anisotropic diffusion, relaxation and damping. Moreover, we assume that the momentum equation is perturbed by a damping term which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions for the associated initial-boundary value problem supplemented with no-slip boundary conditions. When the damping term describes a sink, we establish the conditions for the polynomial time decay or for the exponential time decay of these solutions.
Cite: Antontsev S.N. , de Oliveira H.B. , Khompysh K.
Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping
Nonlinear Differential Equations and Applications. 2022. V.29. N5. 60 . DOI: 10.1007/s00030-022-00794-z WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Feb 17, 2021
Accepted: Jun 24, 2022
Published print: Jul 11, 2022
Identifiers:
Web of science: WOS:000824900300001
Scopus: 2-s2.0-85133928223
Elibrary: 53032621
OpenAlex: W4285043782
Citing:
DB Citing
Scopus 4
OpenAlex 4
Elibrary 2
Web of science 2
Altmetrics: