Sciact
  • EN
  • RU

Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping Научная публикация

Журнал Nonlinear Differential Equations and Applications
ISSN: 1021-9722
Вых. Данные Год: 2022, Том: 29, Номер: 5, Номер статьи : 60, Страниц : DOI: 10.1007/s00030-022-00794-z
Ключевые слова Anisotropic PDEs; Existence; Kelvin-Voigt equations; Large time behavior; Nonhomogeneous and incompressible fluids; Power-laws
Авторы Antontsev S.N. 1,2 , de Oliveira H.B. 1,3,4 , Khompysh Kh. 5
Организации
1 University of Lisbon
2 Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia
3 Universidade do Algarve
4 Universidade Federal de Santa Catarina
5 Al-Farabi Kazakh National University

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: In this work, we consider the nonlinear initial-boundary value problem posed by the Kelvin-Voigt equations for non-homogeneous and incompressible fluid flows with fully anisotropic diffusion, relaxation and damping. Moreover, we assume that the momentum equation is perturbed by a damping term which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions for the associated initial-boundary value problem supplemented with no-slip boundary conditions. When the damping term describes a sink, we establish the conditions for the polynomial time decay or for the exponential time decay of these solutions.
Библиографическая ссылка: Antontsev S.N. , de Oliveira H.B. , Khompysh K.
Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping
Nonlinear Differential Equations and Applications. 2022. V.29. N5. 60 . DOI: 10.1007/s00030-022-00794-z WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 17 февр. 2021 г.
Принята к публикации: 24 июн. 2022 г.
Опубликована в печати: 11 июл. 2022 г.
Идентификаторы БД:
Web of science: WOS:000824900300001
Scopus: 2-s2.0-85133928223
РИНЦ: 53032621
OpenAlex: W4285043782
Цитирование в БД:
БД Цитирований
Scopus 4
OpenAlex 4
РИНЦ 2
Web of science 2
Альметрики: