Global higher regularity of solutions to singular p(x,t)-parabolic equations Научная публикация
Журнал |
Journal of Mathematical Analysis and Applications
ISSN: 0022-247X |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 466, Номер: 1, Страницы: 238-263 Страниц : 26 DOI: 10.1016/j.jmaa.2018.05.075 | ||||||||
Ключевые слова | Higher regularity; Singular parabolic equation; Strong solutions; Variable nonlinearity | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
We study the homogeneous Dirichlet problem for the equation ut=div(|∇u|p(x,t)−2∇u)+f(x,t,u) in the cylinder QT=Ω×(0,T), Ω⊂Rd, d≥2. It is assumed that p(x,t)∈([Formula presented],2) and |∇p|, |pt| are bounded a.e. in QT. We find conditions on p(x,t), f(x,t,u) and u(x,0) sufficient for the existence of strong solutions, local or global in time. It is proven that the strong solutions possess the property of global higher regularity: ut∈L2(QT), |∇u|∈L∞(0,T;L2(Ω)), |Dij 2u|p(x,t)∈L1(QT).
Библиографическая ссылка:
Antontsev S.
, Kuznetsov I.
, Shmarev S.
Global higher regularity of solutions to singular p(x,t)-parabolic equations
Journal of Mathematical Analysis and Applications. 2018. V.466. N1. P.238-263. DOI: 10.1016/j.jmaa.2018.05.075 WOS Scopus РИНЦ OpenAlex
Global higher regularity of solutions to singular p(x,t)-parabolic equations
Journal of Mathematical Analysis and Applications. 2018. V.466. N1. P.238-263. DOI: 10.1016/j.jmaa.2018.05.075 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000438327400013 |
Scopus: | 2-s2.0-85048151186 |
РИНЦ: | 35761485 |
OpenAlex: | W2806719249 |