Sciact
  • EN
  • RU

Global higher regularity of solutions to singular p(x,t)-parabolic equations Научная публикация

Журнал Journal of Mathematical Analysis and Applications
ISSN: 0022-247X
Вых. Данные Год: 2018, Том: 466, Номер: 1, Страницы: 238-263 Страниц : 26 DOI: 10.1016/j.jmaa.2018.05.075
Ключевые слова Higher regularity; Singular parabolic equation; Strong solutions; Variable nonlinearity
Авторы Antontsev Stanislav 1,2,3 , Kuznetsov Ivan 2,3 , Shmarev Sergey 4
Организации
1 CMAF-CIO, University of Lisbon
2 Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
3 Novosibirsk State University, Novosibirsk, Russia
4 Department of Mathematics, University of Oviedo,

Реферат: We study the homogeneous Dirichlet problem for the equation ut=div(|∇u|p(x,t)−2∇u)+f(x,t,u) in the cylinder QT=Ω×(0,T), Ω⊂Rd, d≥2. It is assumed that p(x,t)∈([Formula presented],2) and |∇p|, |pt| are bounded a.e. in QT. We find conditions on p(x,t), f(x,t,u) and u(x,0) sufficient for the existence of strong solutions, local or global in time. It is proven that the strong solutions possess the property of global higher regularity: ut∈L2(QT), |∇u|∈L∞(0,T;L2(Ω)), |Dij 2u|p(x,t)∈L1(QT).
Библиографическая ссылка: Antontsev S. , Kuznetsov I. , Shmarev S.
Global higher regularity of solutions to singular p(x,t)-parabolic equations
Journal of Mathematical Analysis and Applications. 2018. V.466. N1. P.238-263. DOI: 10.1016/j.jmaa.2018.05.075 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000438327400013
Scopus: 2-s2.0-85048151186
РИНЦ: 35761485
OpenAlex: W2806719249
Цитирование в БД:
БД Цитирований
Scopus 20
OpenAlex 20
РИНЦ 21
Web of science 19
Альметрики: