Global higher regularity of solutions to singular p(x,t)-parabolic equations Full article
Journal |
Journal of Mathematical Analysis and Applications
ISSN: 0022-247X |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2018, Volume: 466, Number: 1, Pages: 238-263 Pages count : 26 DOI: 10.1016/j.jmaa.2018.05.075 | ||||||||
Tags | Higher regularity; Singular parabolic equation; Strong solutions; Variable nonlinearity | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
We study the homogeneous Dirichlet problem for the equation ut=div(|∇u|p(x,t)−2∇u)+f(x,t,u) in the cylinder QT=Ω×(0,T), Ω⊂Rd, d≥2. It is assumed that p(x,t)∈([Formula presented],2) and |∇p|, |pt| are bounded a.e. in QT. We find conditions on p(x,t), f(x,t,u) and u(x,0) sufficient for the existence of strong solutions, local or global in time. It is proven that the strong solutions possess the property of global higher regularity: ut∈L2(QT), |∇u|∈L∞(0,T;L2(Ω)), |Dij 2u|p(x,t)∈L1(QT).
Cite:
Antontsev S.
, Kuznetsov I.
, Shmarev S.
Global higher regularity of solutions to singular p(x,t)-parabolic equations
Journal of Mathematical Analysis and Applications. 2018. V.466. N1. P.238-263. DOI: 10.1016/j.jmaa.2018.05.075 WOS Scopus РИНЦ OpenAlex
Global higher regularity of solutions to singular p(x,t)-parabolic equations
Journal of Mathematical Analysis and Applications. 2018. V.466. N1. P.238-263. DOI: 10.1016/j.jmaa.2018.05.075 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000438327400013 |
Scopus: | 2-s2.0-85048151186 |
Elibrary: | 35761485 |
OpenAlex: | W2806719249 |