Sciact
  • EN
  • RU

The impulsive Kelvin--Voigt equations for two-component mixtures of viscoelastic fluids Научная публикация

Журнал Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304
Вых. Данные Год: 2025, Том: 22, Номер: 1, Страницы: 563-586 Страниц : 24 DOI: 10.33048/semi.2025.22.038
Ключевые слова Kelvin Voigt equations, two-component mixture, impulsive partial di erential equation, initial layer
Авторы Antontsev S.N. 1 , Kuznetsov I.V. 1 , Prokudin D.A. 1 , Sazhenkov S.A. 1
Организации
1 Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, 15, pr. Lavrent'eva, 630090, Novosibirsk, Russia

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: We study the multidimensional initial-boundary value problem for the system of Kelvin Voigt equations of a two-component mixture of viscoelastic uids with nonlinear convective terms and a linear impulsive term a regular minor term describing impulsive source or damping. The impulsive term depends on a positive integer parameter n and, as n → +∞, weakly⋆ converges to an expression including the Dirac delta-function, which models impulsive source or damping at the initial moment of time. We prove that an in nitesimal initial impulsive layer, associated with the Dirac delta function, is formed as n → +∞, and that the family of regular weak solutions to the original problem converges to the strong solution of a two-scale microscopic-macroscopic model. This model consists of two initial-boundary value problems that should be solved successively: at rst, the ow of the mixture is de ned on the in nitesimal initial impulsive layer set at the microscopic (`fast') timescale, and, at second, the outer ow beyond the initial impulsive layer is de ned at the macroscopic (`slow') timescale. The equations of the initial impulsive layer inherit the full information about the pro le of the original non-instantaneous source or damping.
Библиографическая ссылка: Antontsev S.N. , Kuznetsov I.V. , Prokudin D.A. , Sazhenkov S.A.
The impulsive Kelvin--Voigt equations for two-component mixtures of viscoelastic fluids
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2025. V.22. N1. P.563-586. DOI: 10.33048/semi.2025.22.038 WOS Scopus
Идентификаторы БД:
Web of science: WOS:001525502900008
Scopus: 2-s2.0-105020441944
Цитирование в БД: Пока нет цитирований
Альметрики: