Sciact
  • EN
  • RU

On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator Научная публикация

Журнал Nonlinear Analysis: Real World Applications
ISSN: 1468-1218
Вых. Данные Год: 2020, Том: 56, Страницы: 103165 Страниц : 1 DOI: 10.1016/j.nonrwa.2020.103165
Ключевые слова Nonlocal equation; Singular parabolic equation; Strong solutions; Variable nonlinearity
Авторы Antontsev Stanislav 1,2,3 , Shmarev Sergey 4
Организации
1 Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia
3 University of Lisbon
4 Mathematics Department, University of Oviedo, c/Fededrico García Lorca, 18, 33007 Oviedo, Spain

Реферат: We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut−div|∇u|p[u]−2∇u=fin Ω×(0,T),where Ω⊂Rd, d≥2, is a smooth bounded domain, p[u]=p(l(u)) is a given function with values in the interval [p−,p+]⊂(1,2), and l(u)=∫Ω|u(x,t)|αdx, α∈[1,2], is a functional of the unknown solution. We find sufficient conditions for global or local in time solvability of the problem, prove the uniqueness, and show that every solution gets extinct in a finite time.
Библиографическая ссылка: Antontsev S. , Shmarev S.
On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator
Nonlinear Analysis: Real World Applications. 2020. V.56. P.103165. DOI: 10.1016/j.nonrwa.2020.103165 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000549179500013
Scopus: 2-s2.0-85085732253
РИНЦ: 43291725
OpenAlex: W3032971296
Цитирование в БД:
БД Цитирований
Scopus 9
OpenAlex 9
РИНЦ 8
Web of science 8
Альметрики: