On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator Full article
Journal |
Nonlinear Analysis: Real World Applications
ISSN: 1468-1218 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 56, Pages: 103165 Pages count : 1 DOI: 10.1016/j.nonrwa.2020.103165 | ||||||||
Tags | Nonlocal equation; Singular parabolic equation; Strong solutions; Variable nonlinearity | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut−div|∇u|p[u]−2∇u=fin Ω×(0,T),where Ω⊂Rd, d≥2, is a smooth bounded domain, p[u]=p(l(u)) is a given function with values in the interval [p−,p+]⊂(1,2), and l(u)=∫Ω|u(x,t)|αdx, α∈[1,2], is a functional of the unknown solution. We find sufficient conditions for global or local in time solvability of the problem, prove the uniqueness, and show that every solution gets extinct in a finite time.
Cite:
Antontsev S.
, Shmarev S.
On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator
Nonlinear Analysis: Real World Applications. 2020. V.56. P.103165. DOI: 10.1016/j.nonrwa.2020.103165 WOS Scopus РИНЦ OpenAlex
On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator
Nonlinear Analysis: Real World Applications. 2020. V.56. P.103165. DOI: 10.1016/j.nonrwa.2020.103165 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000549179500013 |
Scopus: | 2-s2.0-85085732253 |
Elibrary: | 43291725 |
OpenAlex: | W3032971296 |