Sciact
  • EN
  • RU

Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term Научная публикация

Конференция IX Международная конференция, посвященная 120-летию со дня рождения академика Михаила Алексеевича Лаврентьева, «Лаврентьевские чтения по математике, механике и физике»
07-11 сент. 2020 , Новосибирск
Журнал Journal of Physics: Conference Series
ISSN: 1742-6588
Вых. Данные Год: 2020, Том: 1666, Номер статьи : 012025, Страниц : 6 DOI: 10.1088/1742-6596/1666/1/012025
Авторы Kuznetsov I V 1,2 , Sazhenkov S A 1,2
Организации
1 Novosibirsk State University
2 Lavrentyev Institute of Hydrodynamics SB RAS

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: The Cauchy-Dirichlet problem for the genuinely nonlinear ultra-parabolic equation with the piece-wise smooth minor term is considered. The minor term depends on a small positive parameter and collapses to the one-sided Dirac delta function as this parameter tends to zero. As the result, we arrive at the limiting initial-boundary value problem for the impulsive ultra-parabolic equation. The peculiarity is that the standard entropy solution of the problem for the impulsive equation generally is not unique. In this report, we propose a rule for selecting the `proper' entropy solution, relying on the limiting procedure in the original problem incorporating the smooth minor term.
Библиографическая ссылка: Kuznetsov I.V. , Sazhenkov S.A.
Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term
Journal of Physics: Conference Series. 2020. V.1666. 012025 :1-6. DOI: 10.1088/1742-6596/1666/1/012025 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85097094374
РИНЦ: 45138083
OpenAlex: W3110571853
Цитирование в БД: Пока нет цитирований
Альметрики: