Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term Научная публикация
Конференция |
IX Международная конференция, посвященная 120-летию со дня рождения академика Михаила Алексеевича Лаврентьева, «Лаврентьевские чтения по математике, механике и физике» 07-11 сент. 2020 , Новосибирск |
||||
---|---|---|---|---|---|
Журнал |
Journal of Physics: Conference Series
ISSN: 1742-6588 |
||||
Вых. Данные | Год: 2020, Том: 1666, Номер статьи : 012025, Страниц : 6 DOI: 10.1088/1742-6596/1666/1/012025 | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0010 |
Реферат:
The Cauchy-Dirichlet problem for the genuinely nonlinear ultra-parabolic equation with the piece-wise smooth minor term is considered. The minor term depends on a small positive parameter and collapses to the one-sided Dirac delta function as this parameter tends to zero. As the result, we arrive at the limiting initial-boundary value problem for the impulsive ultra-parabolic equation. The peculiarity is that the standard entropy solution of the problem for the impulsive equation generally is not unique. In this report, we propose a rule for selecting the `proper' entropy solution, relying on the limiting procedure in the original problem incorporating the smooth minor term.
Библиографическая ссылка:
Kuznetsov I.V.
, Sazhenkov S.A.
Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term
Journal of Physics: Conference Series. 2020. V.1666. 012025 :1-6. DOI: 10.1088/1742-6596/1666/1/012025 Scopus РИНЦ OpenAlex
Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term
Journal of Physics: Conference Series. 2020. V.1666. 012025 :1-6. DOI: 10.1088/1742-6596/1666/1/012025 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85097094374 |
РИНЦ: | 45138083 |
OpenAlex: | W3110571853 |
Цитирование в БД:
Пока нет цитирований