Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term Full article
Conference |
IX Международная конференция, посвященная 120-летию со дня рождения академика Михаила Алексеевича Лаврентьева, «Лаврентьевские чтения по математике, механике и физике» 07-11 Sep 2020 , Новосибирск |
||||
---|---|---|---|---|---|
Journal |
Journal of Physics: Conference Series
ISSN: 1742-6588 |
||||
Output data | Year: 2020, Volume: 1666, Article number : 012025, Pages count : 6 DOI: 10.1088/1742-6596/1666/1/012025 | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0010 |
Abstract:
The Cauchy-Dirichlet problem for the genuinely nonlinear ultra-parabolic equation with the piece-wise smooth minor term is considered. The minor term depends on a small positive parameter and collapses to the one-sided Dirac delta function as this parameter tends to zero. As the result, we arrive at the limiting initial-boundary value problem for the impulsive ultra-parabolic equation. The peculiarity is that the standard entropy solution of the problem for the impulsive equation generally is not unique. In this report, we propose a rule for selecting the `proper' entropy solution, relying on the limiting procedure in the original problem incorporating the smooth minor term.
Cite:
Kuznetsov I.V.
, Sazhenkov S.A.
Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term
Journal of Physics: Conference Series. 2020. V.1666. 012025 :1-6. DOI: 10.1088/1742-6596/1666/1/012025 Scopus РИНЦ OpenAlex
Entropy solutions of an ultra-parabolic equation with the one-sided Dirac delta function as the minor term
Journal of Physics: Conference Series. 2020. V.1666. 012025 :1-6. DOI: 10.1088/1742-6596/1666/1/012025 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: | 2-s2.0-85097094374 |
Elibrary: | 45138083 |
OpenAlex: | W3110571853 |
Citing:
Пока нет цитирований