Impulsive pseudo-parabolic equations with nonstandard growth, nonlinear source term and infinitesimal initial layer Научная публикация
| Журнал |
Journal of Elliptic and Parabolic Equations
ISSN: 2296-9020 |
||||||
|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2026, Номер: 1, Страницы: 1-24 Страниц : 24 DOI: 10.1007/s41808-025-00430-8 | ||||||
| Ключевые слова | Pseudo-parabolic equation, Variable nonlinearity, Impulsive partial differential equation, Initial layer | ||||||
| Авторы |
|
||||||
| Организации |
|
Реферат:
We study a class of impulsive pseudo-parabolic equations with the nonlinear source terms depending on the solution, its gradient, and Laplacian. The smooth coefficient ϕn(t) before the source term has the support in [0, 1 n ] and converges to the Dirac delta function δ(t=0) as n → ∞. It is shown that the sequence of solutions of the non-instantaneous impulsive equations converges as n → ∞ to a solution of the instantaneous impulsive equation, and that the new initial datum is generated by the solution of a third-order equation on the infinitesimal initial layer.
Библиографическая ссылка:
Antontsev S.
, Kuznetsov I.
, Shmarev S.
Impulsive pseudo-parabolic equations with nonstandard growth, nonlinear source term and infinitesimal initial layer
Journal of Elliptic and Parabolic Equations. 2026. N1. P.1-24. DOI: 10.1007/s41808-025-00430-8
Impulsive pseudo-parabolic equations with nonstandard growth, nonlinear source term and infinitesimal initial layer
Journal of Elliptic and Parabolic Equations. 2026. N1. P.1-24. DOI: 10.1007/s41808-025-00430-8
Даты:
| Поступила в редакцию: | 7 авг. 2025 г. |
| Принята к публикации: | 15 дек. 2025 г. |
| Опубликована в печати: | 8 янв. 2026 г. |
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований