On a class of fully nonlinear parabolic equations Научная публикация
Журнал |
Advances in Nonlinear Analysis
ISSN: 2191-9496 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 8, Номер: 1, Страницы: 79-100 Страниц : 22 DOI: 10.1515/anona-2016-0055 | ||||||
Ключевые слова | asymptotic behavior; extinction in a finite time; Fully nonlinear parabolic equation; strong solution | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
We study the homogeneous Dirichlet problem for the fully nonlinear equation (equation presented) with the parameters m > 1, σ > 1 and d ≥ 0. At the points where δu = 0, the equation degenerates if m > 2, or becomes singular if m (1, 2).We derive conditions of existence and uniqueness of strong solutions, and study the asymptotic behavior of strong solutions as t → ∞. Sufficient conditions for exponential or power decay of ∥∇u(t)∥ 2,ω are derived. It is proved that for certain ranges of the exponents m and σ, every strong solution vanishes in a finite time.
Библиографическая ссылка:
Antontsev S.
, Shmarev S.
On a class of fully nonlinear parabolic equations
Advances in Nonlinear Analysis. 2019. V.8. N1. P.79-100. DOI: 10.1515/anona-2016-0055 WOS Scopus РИНЦ OpenAlex
On a class of fully nonlinear parabolic equations
Advances in Nonlinear Analysis. 2019. V.8. N1. P.79-100. DOI: 10.1515/anona-2016-0055 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000459891200005 |
Scopus: | 2-s2.0-85062615787 |
РИНЦ: | 38697369 |
OpenAlex: | W2552389028 |