Sciact
  • EN
  • RU

On a class of fully nonlinear parabolic equations Full article

Journal Advances in Nonlinear Analysis
ISSN: 2191-9496
Output data Year: 2019, Volume: 8, Number: 1, Pages: 79-100 Pages count : 22 DOI: 10.1515/anona-2016-0055
Tags asymptotic behavior; extinction in a finite time; Fully nonlinear parabolic equation; strong solution
Authors Antontsev Stanislav 1,2 , Shmarev Sergey 3
Affiliations
1 Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia
2 CMAF-CIO, University of Lisbon
3 Departamento de Matemáticas, Universidad de Oviedo

Abstract: We study the homogeneous Dirichlet problem for the fully nonlinear equation (equation presented) with the parameters m > 1, σ > 1 and d ≥ 0. At the points where δu = 0, the equation degenerates if m > 2, or becomes singular if m (1, 2).We derive conditions of existence and uniqueness of strong solutions, and study the asymptotic behavior of strong solutions as t → ∞. Sufficient conditions for exponential or power decay of ∥∇u(t)∥ 2,ω are derived. It is proved that for certain ranges of the exponents m and σ, every strong solution vanishes in a finite time.
Cite: Antontsev S. , Shmarev S.
On a class of fully nonlinear parabolic equations
Advances in Nonlinear Analysis. 2019. V.8. N1. P.79-100. DOI: 10.1515/anona-2016-0055 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000459891200005
Scopus: 2-s2.0-85062615787
Elibrary: 38697369
OpenAlex: W2552389028
Citing:
DB Citing
Scopus 12
OpenAlex 11
Elibrary 13
Web of science 12
Altmetrics: