Sciact
  • EN
  • RU

THE JUNCTION PROBLEM FOR TWO WEAKLY CURVED INCLUSIONS IN AN ELASTIC BODY Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466
Output data Year: 2020, Volume: 61, Number: 4, Pages: 743-754 Pages count : 12 DOI: 10.1134/S003744662004014X
Tags 517.958, BOUNDARY VALUE PROBLEM, CRACK, ELASTIC BODY, INCLUSION, JUNCTION CONDITIONS
Authors Khludnev Aleksandr Mikhailovich 1,2 , Popova Tatyana 3
Affiliations
1 Sobolev Institute of Mathematics SB RAS
2 Lavrentyev Institute of Hydrodynamics
3 The Ammosov North-Eastern Federal University

Abstract: Under study are the boundary value problems that describethe equilibria of two-dimensional elastic bodieswith thin weakly curved inclusionsin the presence of delamination,which means thatthere is a crack between the inclusions and an elastic body.Some inequality-type nonlinear boundary conditionsare imposed on the crack faces that exclude mutual penetration.This puts the problems into the class of those with unknown contact area.We assume that the inclusions have a contact point, find boundary conditions at the junction point,and justify passage to infinity with respect tothe rigidity parameter of the thin inclusion.In particular,we obtain and analyze limit models.
Cite: Khludnev A.M. , Popova T.
THE JUNCTION PROBLEM FOR TWO WEAKLY CURVED INCLUSIONS IN AN ELASTIC BODY
Siberian Mathematical Journal. 2020. V.61. N4. P.743-754. DOI: 10.1134/S003744662004014X WOS Scopus РИНЦ OpenAlex
Original: Хлуднев А.М. , Попова Т.
О ЗАДАЧЕ СОПРЯЖЕНИЯ ДВУХ СЛАБО ИСКРИВЛЕННЫХ ВКЛЮЧЕНИЙ В УПРУГОМ ТЕЛЕ
Siberian Mathematical Journal. 2020. Т.61. №4. С.932–945. DOI: 10.33048/smzh.2020.61.414 РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000554787900014
Scopus: 2-s2.0-85088706542
Elibrary: 45484939
OpenAlex: W3046890727
Citing:
DB Citing
Elibrary 2
OpenAlex 3
Scopus 3
Web of science 2
Altmetrics: