Sciact
  • EN
  • RU

A nonlinear viscoelastic plate equation with $\vec{p}(x,t)$-Laplace operator: Blow up of solutions with negative initial energy Научная публикация

Журнал Nonlinear Analysis: Real World Applications
ISSN: 1468-1218
Вых. Данные Год: 2020, Том: 59, Страницы: 103240 Страниц : 1 DOI: 10.1016/j.nonrwa.2020.103240
Ключевые слова Anisotropy; Blow up in finite time; Non-linear viscoelastic equation; Nonstandard growth conditions; Strong damping
Авторы Antontsev S. 1,2 , Ferreira J. 3
Организации
1 Lavrentyev Institute of Hydrodynamics of SB RAS,
2 CMAF-CIO, University of Lisbon
3 Federal Fluminense University - UFF - VCE

Реферат: In this paper we consider a nonlinear class viscoelastic plate equation with a lower order by perturbation of p⃗(x,t)-Laplace operator of the form utt+Δ2u−Δp⃗(x,t)u+∫0tg(t−s)Δu(s)ds−ϵΔut+f(u)=0,(x,t)∈QT=Ω×(0,T), associated with initial and Dirichlet–Neumann boundary conditions. Under suitable conditions on g,f and the variable exponent of the p⃗(x,t)-Laplace operator, we prove a blow up in finite time with negative initial energy in the presence of a strong damping ϵΔut(ϵ>0) acting in the domain. This equation corresponds to a viscoelastic version arising in dynamics of elastoplastic flows and plate vibrations.
Библиографическая ссылка: Antontsev S. , Ferreira J.
A nonlinear viscoelastic plate equation with $\vec{p}(x,t)$-Laplace operator: Blow up of solutions with negative initial energy
Nonlinear Analysis: Real World Applications. 2020. V.59. P.103240. DOI: 10.1016/j.nonrwa.2020.103240 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000618633800005
Scopus: 2-s2.0-85096652415
РИНЦ: 45125438
OpenAlex: W3107956981
Цитирование в БД:
БД Цитирований
Scopus 10
OpenAlex 7
РИНЦ 7
Web of science 10
Альметрики: