Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 98, Number: 2, Pages: 506-510 Pages count : 5 DOI: 10.1134/S1064562418060315 | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Российский научный фонд | 16-11-10033 |
Abstract:
An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where the computed weak solutions are smooth. In this scheme, Rusanov's explicit nonmonotone scheme of the third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET. The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third order in time are demonstrated in test computations. © 2018, Pleiades Publishing, Ltd.
Cite:
Zyuzina N.A.
, Kovyrkina O.A.
, Ostapenko V.V.
Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence
Doklady Mathematics. 2018. V.98. N2. P.506-510. DOI: 10.1134/S1064562418060315 WOS Scopus РИНЦ OpenAlex
Monotone Finite-Difference Scheme Preserving High Accuracy in Regions of Shock Influence
Doklady Mathematics. 2018. V.98. N2. P.506-510. DOI: 10.1134/S1064562418060315 WOS Scopus РИНЦ OpenAlex
Original:
Зюзина Н.А.
, Ковыркина О.А.
, Остапенко В.В.
Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн
Доклады Академии наук. 2018. Т.482. №6. С.639-643. DOI: 10.31857/s086956520002921-6 РИНЦ OpenAlex
Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн
Доклады Академии наук. 2018. Т.482. №6. С.639-643. DOI: 10.31857/s086956520002921-6 РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000449956100024 |
Scopus: | 2-s2.0-85056273771 |
Elibrary: | 38202843 |
OpenAlex: | W2899683254 |