Sciact
  • EN
  • RU

On the Monotonicity of the CABARET Scheme Approximating a Scalar Conservation Law with an Alternating Characteristic Field and Convex Flux Function Научная публикация

Журнал Mathematical Models and Computer Simulations
ISSN: 2070-0482
Вых. Данные Год: 2019, Том: 11, Номер: 1, Страницы: 46-60 Страниц : 15 DOI: 10.1134/S2070048219010186
Ключевые слова CABARET scheme; monotonicity; scalar conservation law with a convex flux; sonic lines
Авторы Ostapenko V.V. 1,2 , Zyuzina N.A. 1,2 , Kovyrkina O.A. 1
Организации
1 Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Siberia, Russia
2 Novosibirsk State University, Siberia, Russia

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 16-01-00333

Реферат: The monotonicity of the CABARET scheme approximating the quasi-linear scalar conservation law with a convex flux is analyzed. The monotonicity conditions for this scheme are obtained in the areas where the propagation velocity of the characteristics has a constant sign, as well as in the areas of sonic lines, sonic bands, and shock waves, where the propagation velocity of the characteristics of the approximated divergent equation changes sign. The test computations are presented that illustrate these properties of the CABARET scheme.
Библиографическая ссылка: Ostapenko V.V. , Zyuzina N.A. , Kovyrkina O.A.
On the Monotonicity of the CABARET Scheme Approximating a Scalar Conservation Law with an Alternating Characteristic Field and Convex Flux Function
Mathematical Models and Computer Simulations. 2019. V.11. N1. P.46-60. DOI: 10.1134/S2070048219010186 Scopus РИНЦ OpenAlex
Оригинальная: Зюзина Н.А. , Ковыркина О.А. , Остапенко В.В.
О монотонности схемы КАБАРЕ, аппроксимирующей скалярный закон сохранения со знакопеременным характеристическим полем и выпуклой функцией потоков
Математическое моделирование. 2018. Т.30. №5. С.76-98. РИНЦ
Идентификаторы БД:
Scopus: 2-s2.0-85065417619
РИНЦ: 38691856
OpenAlex: W2944373024
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 3
РИНЦ 2
Альметрики: