Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities Научная публикация
Журнал |
Electronic Journal of Differential Equations
ISSN: 1072-6691 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 2021, Номер: 06, Страницы: 1-18 Страниц : 18 | ||||||||
Ключевые слова | BLOW UP, GLOBAL SOLUTION, PETROVSKY EQUATION, VARIABLE-EXPONENT NONLINEARITIES | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
In this article, we consider a nonlinear plate (or beam) Petrovsky equation with strong damping and source terms with variable exponents. By using the Banach contraction mapping principle we obtain local weak solutions, under suitable assumptions on the variable exponents p(·) and q(·). Then we show that the solution is global if p(·) ≥ q(·). Also, we prove that a solution with negative initial energy and p(·) < q(·) blows up in finite time.
Библиографическая ссылка:
Antontsev S.N.
, Ferreira J.
, Piskin E.
Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities
Electronic Journal of Differential Equations. 2021. V.2021. N06. P.1-18. РИНЦ OpenAlex
Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities
Electronic Journal of Differential Equations. 2021. V.2021. N06. P.1-18. РИНЦ OpenAlex
Даты:
Опубликована в печати: | 29 янв. 2021 г. |
Идентификаторы БД:
РИНЦ: | 46742313 |
OpenAlex: | W3193449460 |