Concentrations Problem for Solutions to Compressible Navier–Stokes Equations Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 |
||
---|---|---|---|
Output data | Year: 2020, Volume: 102, Number: 3, Pages: 493-496 Pages count : 4 DOI: 10.1134/s1064562420060149 | ||
Tags | concentration phenomenon; Navier–Stokes equations; viscous gas | ||
Authors |
|
||
Affiliations |
|
Abstract:
A three-dimensional initial-boundary value problem for the isentropic equations of the dynamics of a viscous gas is considered. The concentration phenomenon is that, for adiabatic exponent values 3/2, the finite energy can be concentrated on arbitrarily small sets. It is proved that, in the critical case γ = 3/2, the norm of the density of kinetic energy in the logarithmic Orlicz space is bounded by a constant that depends only on the initial and boundary data. This eliminates the possibility of the concentration phenomenon.
Cite:
Plotnikov P.I.
Concentrations Problem for Solutions to Compressible Navier–Stokes Equations
Doklady Mathematics. 2020. V.102. N3. P.493-496. DOI: 10.1134/s1064562420060149 WOS Scopus РИНЦ OpenAlex
Concentrations Problem for Solutions to Compressible Navier–Stokes Equations
Doklady Mathematics. 2020. V.102. N3. P.493-496. DOI: 10.1134/s1064562420060149 WOS Scopus РИНЦ OpenAlex
Original:
Плотников П.И.
ПРОБЛЕМА КОНЦЕНТРАЦИЙ РЕШЕНИЙ УРАВНЕНИЙ ДИНАМИКИ ВЯЗКОГО ГАЗА
ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ. 2020. Т.495. №1. С.55-58. DOI: 10.31857/S2686954320060120 РИНЦ OpenAlex
ПРОБЛЕМА КОНЦЕНТРАЦИЙ РЕШЕНИЙ УРАВНЕНИЙ ДИНАМИКИ ВЯЗКОГО ГАЗА
ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ. 2020. Т.495. №1. С.55-58. DOI: 10.31857/S2686954320060120 РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000627403800012 |
Scopus: | 2-s2.0-85102502693 |
Elibrary: | 6781302 |
OpenAlex: | W3134505924 |
Citing:
Пока нет цитирований