Sciact
  • EN
  • RU

DESCRIBING THE ASYMPTOTIC BEHAVIOR OF A LOW-VISCOSITY FLUID IN AN ELLIPTICAL PLANE WITH A MOVING BOUNDARY Научная публикация

Журнал Journal of Applied Mechanics and Technical Physics
ISSN: 0021-8944
Вых. Данные Год: 2020, Том: 61, Номер: 1, Страницы: 25–36 Страниц : DOI: 10.1134/S0021894420010034
Ключевые слова slip condition, boundary layer, heat equation, vorticity, stream function.
Авторы Пивоваров Юрий Владимирович 1
Организации
1 Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Реферат: A problem of plane–parallel steady motion of a low-viscosity incompressible fluid inside an elliptical cavity with a wall moving along its contour is under consideration. A slip condition with a constant or piecewise-constant slip function is set at the cavity boundary. This problem is solved using the method of merging asymptotic expansions. When the Reynolds number is of the order of Re = 1500 and there are no corner points in the flow region, the calculation time decreases by hundreds of times compared with the case where the finite difference method is applied. The flow region is divided into an inviscid core in which vorticity is constant and a “weak” boundary layer. The equation of the “weak” boundary layer by changing variables is reduced to a heat equation whose solution is constructed in the form of a series.
Библиографическая ссылка: Pivovarov Y.V.
DESCRIBING THE ASYMPTOTIC BEHAVIOR OF A LOW-VISCOSITY FLUID IN AN ELLIPTICAL PLANE WITH A MOVING BOUNDARY
Journal of Applied Mechanics and Technical Physics. 2020. V.61. N1. P.25–36. DOI: 10.1134/S0021894420010034 WOS Scopus РИНЦ OpenAlex
Оригинальная: Пивоваров Ю.В.
Описание асимптотического поведения маловязкой жидкости в эллиптической полости с движущейся границей
Прикладная механика и техническая физика. 2020. Т.61. №1. С.30-42. DOI: 10.15372/PMTF20200103 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 7 мар. 2019 г.
Принята к публикации: 26 авг. 2019 г.
Опубликована в печати: 28 февр. 2020 г.
Опубликована online: 28 февр. 2020 г.
Идентификаторы БД:
Web of science: WOS:000556247100003
Scopus: 2-s2.0-85089018382
РИНЦ: 45446269
OpenAlex: W3047091868
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
РИНЦ 1
Web of science 1
Альметрики: