Strong solutions of impulsive pseudoparabolic equations Научная публикация
Журнал |
Nonlinear Analysis: Real World Applications
ISSN: 1468-1218 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 65, Номер статьи : 103509, Страниц : 19 DOI: 10.1016/j.nonrwa.2022.103509 | ||||
Ключевые слова | Impulsive equations; Pseudoparabolic equations; Strong solutions; Transition layer | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0010 |
Реферат:
We study the two-dimensional Cauchy problem for the quasilinear pseudo-parabolic equation with a regular nonlinear minor term endowed with periodic initial data and periodicity conditions. The minor term depends on a small parameter ε>0 and, as ε→0, converges weakly* to the expression incorporating the Dirac delta function, which models an instantaneous impulsive impact. We establish that the transition (shock) layer, associated with the Dirac delta function, is formed as ε→0, and that the family of strong solutions of the original problem converges to the strong solution of a two-scale microscopic-macroscopic model. This model consists of two equations and the set of initial and matching conditions, so that the `outer' macroscopic solution beyond the transition layer is governed by the
quasilinear homogeneous pseudoparabolic equation at the macroscopic (`slow') timescale, while the transition layer solution is defined at the microscopic level and obeys the semilinear pseudoparabolic equation at the microscopic (`fast') timescale. The latter is derived based on the microstructure of the transition layer profile.
Библиографическая ссылка:
Kuznetsov I.
, Sazhenkov S.
Strong solutions of impulsive pseudoparabolic equations
Nonlinear Analysis: Real World Applications. 2022. V.65. 103509 :1-19. DOI: 10.1016/j.nonrwa.2022.103509 WOS Scopus РИНЦ OpenAlex
Strong solutions of impulsive pseudoparabolic equations
Nonlinear Analysis: Real World Applications. 2022. V.65. 103509 :1-19. DOI: 10.1016/j.nonrwa.2022.103509 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 8 дек. 2021 г. |
Принята к публикации: | 6 янв. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000795544200007 |
Scopus: | 2-s2.0-85123307899 |
РИНЦ: | 48145186 |
OpenAlex: | W4207037747 |