Sciact
  • EN
  • RU

Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions Full article

Journal Technologies
, E-ISSN: 2227-7080
Output data Year: 2020, Volume: 8, Number: 4, Article number : 59, Pages count : 11 DOI: 10.3390/technologies8040059
Tags KIRCHHOFF-LOVE PLATE, COMPOSITE MATERIAL, THIN INCLUSION, ASYMPTOTIC ANALYSIS
Authors Rudoy Evgeny 1,2
Affiliations
1 Lavrentyev Institute of Hydrodynamics of SB RAS, 630090 Novosibirsk, Russia
2 Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia

Abstract: An equilibrium problem of the Kirchhoff–Love plate containing a nonhomogeneous inclusion is considered. It is assumed that elastic properties of the inclusion depend on a small parameter characterizing the width of the inclusion ε as εN with N<1. The passage to the limit as the parameter ε tends to zero is justified, and an asymptotic model of a plate containing a thin inhomogeneous hard inclusion is constructed. It is shown that there exists two types of thin inclusions: rigid inclusion (N<−1) and elastic inclusion (N=−1). The inhomogeneity disappears in the case of N∈(−1,1).
Cite: Rudoy E.
Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions
Technologies. 2020. V.8. N4. 59 :1-11. DOI: 10.3390/technologies8040059 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 1, 2020
Accepted: Oct 23, 2020
Published print: Oct 28, 2020
Identifiers:
Web of science: WOS:000601795400001
Scopus: 2-s2.0-85104780894
Elibrary: 65365892
OpenAlex: W3090273784
Citing:
DB Citing
Web of science 18
Scopus 19
OpenAlex 14
Elibrary 17
Altmetrics: