Sciact
  • EN
  • RU

Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions Научная публикация

Журнал Technologies
, E-ISSN: 2227-7080
Вых. Данные Год: 2020, Том: 8, Номер: 4, Номер статьи : 59, Страниц : 11 DOI: 10.3390/technologies8040059
Ключевые слова KIRCHHOFF-LOVE PLATE, COMPOSITE MATERIAL, THIN INCLUSION, ASYMPTOTIC ANALYSIS
Авторы Rudoy Evgeny 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics of SB RAS, 630090 Novosibirsk, Russia
2 Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia

Реферат: An equilibrium problem of the Kirchhoff–Love plate containing a nonhomogeneous inclusion is considered. It is assumed that elastic properties of the inclusion depend on a small parameter characterizing the width of the inclusion ε as εN with N<1. The passage to the limit as the parameter ε tends to zero is justified, and an asymptotic model of a plate containing a thin inhomogeneous hard inclusion is constructed. It is shown that there exists two types of thin inclusions: rigid inclusion (N<−1) and elastic inclusion (N=−1). The inhomogeneity disappears in the case of N∈(−1,1).
Библиографическая ссылка: Rudoy E.
Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions
Technologies. 2020. V.8. N4. 59 :1-11. DOI: 10.3390/technologies8040059 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 1 окт. 2020 г.
Принята к публикации: 23 окт. 2020 г.
Опубликована в печати: 28 окт. 2020 г.
Идентификаторы БД:
Web of science: WOS:000601795400001
Scopus: 2-s2.0-85104780894
РИНЦ: 65365892
OpenAlex: W3090273784
Цитирование в БД:
БД Цитирований
Web of science 18
Scopus 19
OpenAlex 14
РИНЦ 17
Альметрики: