On Equilibrium Problem for T-Shape Elastic Structure Full article
Journal |
Axioms
ISSN: 2075-1680 |
||
---|---|---|---|
Output data | Year: 2025, Volume: 14, Number: 1, Article number : 49, Pages count : 19 DOI: 10.3390/axioms14010049 | ||
Tags | T-shape structure; elastic plate; volume and thin inclusions; solution existence; asymptotic analysis; Neumann boundary condition | ||
Authors |
|
||
Affiliations |
|
Abstract:
This paper is concerned with an equilibrium problem for an elastic structure consisting of a plate and an elastic beam connected to each other at a given point. We consider two cases: In the first one, the elastic beam is connected to a rigid part of the elastic plate; in the second case, contact occurs between two elastic bodies. The elastic plate may contain a thin rigid delaminated inclusion. Neumann-type boundary conditions are considered at the external boundary of the plate. The existence of a solution to the considered problems is proven. A sufficient and necessary condition imposed onto the external forces for the solvability of the problems is found. Passages to the limit with respect to the rigidity parameter of the elastic beam are justified. For all problems, we analyze variational statements as well as differential ones.
Cite:
Khludnev A.
On Equilibrium Problem for T-Shape Elastic Structure
Axioms. 2025. V.14. N1. 49 :1-19. DOI: 10.3390/axioms14010049 WOS РИНЦ OpenAlex
On Equilibrium Problem for T-Shape Elastic Structure
Axioms. 2025. V.14. N1. 49 :1-19. DOI: 10.3390/axioms14010049 WOS РИНЦ OpenAlex
Dates:
Submitted: | Dec 3, 2024 |
Accepted: | Jan 5, 2025 |
Published print: | Jan 10, 2025 |
Identifiers:
Web of science: | WOS:001404032000001 |
Elibrary: | 80285759 |
OpenAlex: | W4406247171 |
Citing:
Пока нет цитирований