Sciact
  • EN
  • RU

Thin inclusion at the junction of two elastic bodies: non-coercive case Full article

Journal Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN: 1364-503X
Output data Year: 2024, Volume: 382, Number: 2277, DOI: 10.1098/rsta.2023.0296
Authors Khludnev A.M. 1
Affiliations
1 Lavrentyev Institute of Hydrodynamics of RAS, Novosibirsk 630090, Russia

Funding (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Abstract: This article addresses an analysis of the non-coercive boundary value problem describing an equilibrium state of two contacting elastic bodies connected by a thin elastic inclusion. Nonlinear conditions of inequality type are imposed at the joint boundary of the bodies providing a mutual non-penetration. As for conditions at the external boundary, they are Neumann type and imply the non-coercivity of the problem. Assuming that external forces satisfy suitable conditions, a solution existence of the problem analysed is proved. Passages to limits are justified as the rigidity parameters of the inclusion and the elastic body tend to infinity. This article is part of the theme issue ‘Non-smooth variational problems with applications in mechanics’
Cite: Khludnev A.M.
Thin inclusion at the junction of two elastic bodies: non-coercive case
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2024. V.382. N2277. DOI: 10.1098/rsta.2023.0296 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:001279586200008
Scopus: 2-s2.0-85199015822
Elibrary: 68548425
OpenAlex: W4400662097
Citing:
DB Citing
OpenAlex 1
Scopus 1
Web of science 1
Altmetrics: