Sciact
  • EN
  • RU

Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids Научная публикация

Журнал Communications in Mathematical Sciences
ISSN: 1539-6746
Вых. Данные Год: 2019, Том: 17, Номер: 7, Страницы: 1915-1948 Страниц : 34 DOI: 10.4310/cms.2019.v17.n7.a7
Ключевые слова Kelvin-Voigt equations; nonhomogeneous and incompressible uids; power-laws; existence; large-time behavior
Авторы Antontsev Stanislav N. 1,2 , de Oliveira Hermenegildo B. 1,3 , Khompysh Khonatbek 4
Организации
1 Centre of Mathematics, Fundamental Applications and Operations Research (CMAFCIO), Universidade de Lisboa, Portugal
2 Lavrentyev Institute of Hydrodynamics, SB RAS
3 Universidade do Algarve, Faro
4 Al-Farabi Kazakh National University, Department of Mechanics and Mathematics

Реферат: In this work, we consider the Kelvin-Voigt equations for non-homogeneous and incompressible fluid flows with the diffusion and relaxation terms described by two distinct power-laws. Moreover, we assume that the momentum equation is perturbed by an extra term, which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. For the associated initial-boundary value problem, we study the existence of weak solutions as well as the large-time behavior of the solutions. In the case the extra term is a sink, we prove the global existence of weak solutions and we establish the conditions for the polynomial time decay and for the exponential time decay of these solutions. If the extra term is a source, we show how the exponents of nonlinearity must interact to ensure the local existence of weak solutions.
Библиографическая ссылка: Antontsev S.N. , de Oliveira H.B. , Khompysh K.
Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids
Communications in Mathematical Sciences. 2019. V.17. N7. P.1915-1948. DOI: 10.4310/cms.2019.v17.n7.a7 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000505777300007
Scopus: 2-s2.0-85078537783
РИНЦ: 43237996
OpenAlex: W3000521234
Цитирование в БД:
БД Цитирований
Scopus 22
OpenAlex 25
РИНЦ 17
Web of science 21
Альметрики: