Sciact
  • EN
  • RU

Curl Equation in Viscous Hydrodynamics in a Channel of Complex Geometry Научная публикация

Журнал Journal of Applied and Industrial Mathematics
ISSN: 1990-4789
Вых. Данные Год: 2023, Том: 17, Номер: 4, Страницы: 892-900 Страниц : 9 DOI: 10.1134/s1990478923040166
Ключевые слова Navier–Stokes equations, curvilinear coordinate system, streamline, streamline curvature, consistency condition, curl equation
Авторы Vasyutkin S.A. 1 , Chupakhin A.P. 1
Организации
1 Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia

Реферат: We consider the Navier–Stokes equations for the plane steady motion of a viscous incompressible fluid in an orthogonal coordinate system in which the fluid streamlines coincide with the coordinate lines of one of the families of the orthogonal coordinate system. In this coordinate system, the velocity vector has only the tangential component and the system of three Navier–Stokes equations is an overdetermined system for two functions—the tangential component of velocity and pressure. In the present paper, the system is brought to involution, and the consistency conditions are obtained, which are the equations for the curl of the velocity in this coordinate system. The coefficients of these equations include the curvatures of the coordinate lines and their derivatives up to the second order. The equations obtained are significantly more complicated than the curl equations in a channel of simple geometry.
Библиографическая ссылка: Vasyutkin S.A. , Chupakhin A.P.
Curl Equation in Viscous Hydrodynamics in a Channel of Complex Geometry
Journal of Applied and Industrial Mathematics. 2023. V.17. N4. P.892-900. DOI: 10.1134/s1990478923040166 Scopus РИНЦ OpenAlex
Оригинальная: Васюткин С.А. , Чупахин А.П.
УРАВНЕНИЕ ДЛЯ ВИХРЯ В ВЯЗКОЙ ГИДРОДИНАМИКЕ В КАНАЛЕ СЛОЖНОЙ ГЕОМЕТРИИ
Сибирский журнал индустриальной математики. 2023. Т.26. №4 (96). С.5-15. DOI: 10.33048/SIBJIM.2023.26.401 РИНЦ
Даты:
Поступила в редакцию: 21 апр. 2023 г.
Принята к публикации: 1 нояб. 2023 г.
Опубликована в печати: 16 февр. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85185259279
РИНЦ: 64762882
OpenAlex: W4391901752
Цитирование в БД: Пока нет цитирований
Альметрики: