A Problem of an Ideal Fluid Flow with a Singular Sink at a Depression on the Bottom Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 |
||
---|---|---|---|
Output data | Year: 2021, Volume: 15, Pages: 513 - 530 Pages count : 18 DOI: 10.1134/S1990478921030133 | ||
Authors |
|
||
Affiliations |
|
Abstract:
Under consideration is the two-dimensional stationary problem of flow of an ideal incompressible fluid bounded by an impenetrable bottom and a free surface from above. The flow is caused by a singular sink of a given strength that is located at the top of a triangular depression on the bottom. The problem is to determine the shape of the free boundary and the velocity field of the fluid. Using a conformal map and the Levi–Civita method, we rewrite the problem as an operator equation in a Hilbert space and prove the existence of a solution for the Froude number greater than some particular value.
Cite:
Titova A.A.
A Problem of an Ideal Fluid Flow with a Singular Sink at a Depression on the Bottom
Journal of Applied and Industrial Mathematics. 2021. V.15. P.513 - 530. DOI: 10.1134/S1990478921030133 Scopus РИНЦ OpenAlex
A Problem of an Ideal Fluid Flow with a Singular Sink at a Depression on the Bottom
Journal of Applied and Industrial Mathematics. 2021. V.15. P.513 - 530. DOI: 10.1134/S1990478921030133 Scopus РИНЦ OpenAlex
Original:
Титова А.А.
Задача о потоке идеальной жидкости с сингулярным стоком во впадине на дне
Сибирский журнал индустриальной математики. 2021. Т.24. №3. С.101-121. DOI: 10.33048/SIBJIM.2021.24.308 РИНЦ OpenAlex
Задача о потоке идеальной жидкости с сингулярным стоком во впадине на дне
Сибирский журнал индустриальной математики. 2021. Т.24. №3. С.101-121. DOI: 10.33048/SIBJIM.2021.24.308 РИНЦ OpenAlex
Dates:
Submitted: | May 17, 2021 |
Accepted: | Jun 24, 2021 |
Published print: | Mar 16, 2022 |
Published online: | Mar 16, 2022 |
Identifiers:
Scopus: | 2-s2.0-85126277635 |
Elibrary: | 48152328 |
OpenAlex: | W4233668312 |
Citing:
Пока нет цитирований