Sciact
  • EN
  • RU

A Problem of an Ideal Fluid Flow with a Singular Sink at a Depression on the Bottom Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789
Output data Year: 2021, Volume: 15, Pages: 513 - 530 Pages count : 18 DOI: 10.1134/S1990478921030133
Authors Titova A.A. 1
Affiliations
1 Lavrentyev Institute of Hydrodynamics

Abstract: Under consideration is the two-dimensional stationary problem of flow of an ideal incompressible fluid bounded by an impenetrable bottom and a free surface from above. The flow is caused by a singular sink of a given strength that is located at the top of a triangular depression on the bottom. The problem is to determine the shape of the free boundary and the velocity field of the fluid. Using a conformal map and the Levi–Civita method, we rewrite the problem as an operator equation in a Hilbert space and prove the existence of a solution for the Froude number greater than some particular value.
Cite: Titova A.A.
A Problem of an Ideal Fluid Flow with a Singular Sink at a Depression on the Bottom
Journal of Applied and Industrial Mathematics. 2021. V.15. P.513 - 530. DOI: 10.1134/S1990478921030133 Scopus РИНЦ OpenAlex
Original: Титова А.А.
Задача о потоке идеальной жидкости с сингулярным стоком во впадине на дне
Сибирский журнал индустриальной математики. 2021. Т.24. №3. С.101-121. DOI: 10.33048/SIBJIM.2021.24.308 РИНЦ OpenAlex
Dates:
Submitted: May 17, 2021
Accepted: Jun 24, 2021
Published print: Mar 16, 2022
Published online: Mar 16, 2022
Identifiers:
Scopus: 2-s2.0-85126277635
Elibrary: 48152328
OpenAlex: W4233668312
Citing: Пока нет цитирований
Altmetrics: