Sciact
  • EN
  • RU

Higher regularity of solutions of singular parabolic equations with variable nonlinearity Научная публикация

Журнал Applicable Analysis
ISSN: 0003-6811
Вых. Данные Год: 2019, Том: 98, Номер: 1-2, Страницы: 310-331 Страниц : 22 DOI: 10.1080/00036811.2017.1382690
Ключевые слова Nonlinear parabolic equations; regularity of solutions; singular equations; variable nonlinearity
Авторы Antontsev S. 1,2 , Shmarev S. 3
Организации
1 CMAF-CIO, University of Lisbon
2 Lavrentyev Institute of Hydrodynamics SB RAS
3 Department of Mathematics, University of Oviedo

Реферат: We study the global regularity of solutions of the homogeneous Dirichlet problem for the parabolic equation with variable nonlinearity (Formula presented.) where p(x, t), (Formula presented.) are given functions of their arguments, (Formula presented.) and (Formula presented.). Conditions on the data are found that guarantee the existence of a unique strong solution such that (Formula presented.) and (Formula presented.). It is shown that if (Formula presented.) with (Formula presented.), p and (Formula presented.) are Hölder-continuous in (Formula presented.), (Formula presented.) and (Formula presented.), then for every strong solution (Formula presented.) with any (Formula presented.).
Библиографическая ссылка: Antontsev S. , Shmarev S.
Higher regularity of solutions of singular parabolic equations with variable nonlinearity
Applicable Analysis. 2019. V.98. N1-2. P.310-331. DOI: 10.1080/00036811.2017.1382690 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000458651400015
Scopus: 2-s2.0-85030560989
РИНЦ: 41773145
OpenAlex: W2760819725
Цитирование в БД:
БД Цитирований
Scopus 8
OpenAlex 7
РИНЦ 8
Web of science 9
Альметрики: