Sciact
  • EN
  • RU

An inverse problem for the pseudo-parabolic equation with p-Laplacian Научная публикация

Журнал Evolution Equations and Control Theory
ISSN: 2163-2472
Вых. Данные Год: 2022, Том: 11, Номер: 2, Страницы: 399-414 Страниц : 16 DOI: 10.3934/eect.2021005
Ключевые слова Asymptotic behavior of the solution; Blow-up solution; Inverse problem; Non-local overdetermination condition; Pseudo-parabolic equations; Solvability
Авторы Antontsev Stanislav Nikolaevich 1 , Aitzhanov Serik Ersultanovich 2,3 , Ashurova Guzel Rashitkhuzhakyzy 3
Организации
1 Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia
2 Al-Farabi Kazakh National University
3 Institute of Mathematics and Mathematical Modeling

Реферат: In this article, we study the inverse problem of determining the right side of the pseudo-parabolic equation with a p-Laplacian and nonlocal integral overdetermination condition. The existence of solutions in a local and global time to the inverse problem is proved by using the Galerkin method. Sufficient conditions for blow-up (explosion) of the local solutions in a finite time are derived. The asymptotic behavior of solutions to the inverse problem is studied for large values of time. Sufficient conditions are obtained for the solution to disappear (vanish to identical zero) in a finite time. The limits conditions that which ensure the appropriate behavior of solutions are considered.
Библиографическая ссылка: Antontsev S.N. , Aitzhanov S.E. , Ashurova G.R.
An inverse problem for the pseudo-parabolic equation with p-Laplacian
Evolution Equations and Control Theory. 2022. V.11. N2. P.399-414. DOI: 10.3934/eect.2021005 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85121518757
РИНЦ: 48141956
OpenAlex: W3118812685
Цитирование в БД:
БД Цитирований
Scopus 19
OpenAlex 16
РИНЦ 8
Альметрики: