Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping Научная публикация
Журнал |
Journal of Mathematical Analysis and Applications
ISSN: 0022-247X |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 473, Номер: 2, Страницы: 1122-1154 Страниц : 33 DOI: 10.1016/j.jmaa.2019.01.011 | ||||||||
Ключевые слова | Anisotropic damping; Anisotropic diffusion; Anisotropic relaxation; Existence; Kelvin–Voigt equations; Uniqueness | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
The purpose of this work is the analysis of the existence and uniqueness of weak solutions to a Kelvin–Voigt problem wherein the viscous and relaxation parts of the stress tensor are given by distinct power-laws. We assume that the viscous and relaxation terms may be fully anisotropic and that the momentum equation is perturbed by a damping term which may also be fully anisotropic. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions. The uniqueness of weak solutions is established in this case as well. For the full anisotropic problem, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients must interact in order to be established global and local in time a priori estimates.
Библиографическая ссылка:
Antontsev S.N.
, de Oliveira H.B.
, Khompysh K.
Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping
Journal of Mathematical Analysis and Applications. 2019. V.473. N2. P.1122-1154. DOI: 10.1016/j.jmaa.2019.01.011 WOS Scopus РИНЦ OpenAlex
Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping
Journal of Mathematical Analysis and Applications. 2019. V.473. N2. P.1122-1154. DOI: 10.1016/j.jmaa.2019.01.011 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000459231500025 |
Scopus: | 2-s2.0-85060092303 |
РИНЦ: | 38653571 |
OpenAlex: | W2908713540 |