Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion Full article
| Journal |
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304 |
||||
|---|---|---|---|---|---|
| Output data | Year: 2022, Volume: 19, Number: 2, Pages: 935-948 Pages count : 14 DOI: 10.33048/semi.2022.19.078 | ||||
| Tags | ASYMPTOTIC ANALYSIS, INHOMOGENEOUS ELASTIC BODY, NARROW INCLUSION, CURVILINEAR CRACK, INTERFACE CONDITIONS | ||||
| Authors |
|
||||
| Affiliations |
|
Abstract:
Within the framework of two-dimensional elasticity theory, a heterogeneous body with a narrow inclusion lying strictly inside the body is considered. It is assumed that the elastic properties of inclusion and its width depend on the small parameter δ > 0. Moreover, we assume
that the inclusion has a curvilinear rough boundary. We show that there exist three type of limiting problem as δ → 0: p > 1 body with crack
without interaction of its faces; p = 1 body with crack with adhesive interaction of its faces; p ∈ [0, 1) homogeneous body (no crack).
Cite:
Fankina I.V.
, Furtsev A.I.
, Rudoy E.M.
, Sazhenkov S.A.
Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2022. V.19. N2. P.935-948. DOI: 10.33048/semi.2022.19.078 WOS Scopus РИНЦ
Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2022. V.19. N2. P.935-948. DOI: 10.33048/semi.2022.19.078 WOS Scopus РИНЦ
Dates:
| Submitted: | Sep 14, 2022 |
| Accepted: | Dec 10, 2022 |
Identifiers:
| Web of science: | WOS:000959099400004 |
| Scopus: | 2-s2.0-85145828725 |
| Elibrary: | 50336864 |