Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion Научная публикация
Журнал |
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 19, Номер: 2, Страницы: 935-948 Страниц : 14 DOI: 10.33048/semi.2022.19.078 | ||||
Ключевые слова | ASYMPTOTIC ANALYSIS, INHOMOGENEOUS ELASTIC BODY, NARROW INCLUSION, CURVILINEAR CRACK, INTERFACE CONDITIONS | ||||
Авторы |
|
||||
Организации |
|
Реферат:
Within the framework of two-dimensional elasticity theory, a heterogeneous body with a narrow inclusion lying strictly inside the body is considered. It is assumed that the elastic properties of inclusion and its width depend on the small parameter δ > 0. Moreover, we assume
that the inclusion has a curvilinear rough boundary. We show that there exist three type of limiting problem as δ → 0: p > 1 body with crack
without interaction of its faces; p = 1 body with crack with adhesive interaction of its faces; p ∈ [0, 1) homogeneous body (no crack).
Библиографическая ссылка:
Fankina I.V.
, Furtsev A.I.
, Rudoy E.M.
, Sazhenkov S.A.
Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2022. V.19. N2. P.935-948. DOI: 10.33048/semi.2022.19.078 WOS Scopus РИНЦ
Asymptotic modeling of curvilinear narrow inclusions with rough boundaries in elastic bodies: case of a soft inclusion
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2022. V.19. N2. P.935-948. DOI: 10.33048/semi.2022.19.078 WOS Scopus РИНЦ
Даты:
Поступила в редакцию: | 14 сент. 2022 г. |
Принята к публикации: | 10 дек. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000959099400004 |
Scopus: | 2-s2.0-85145828725 |
РИНЦ: | 50336864 |