A parametrization of the general Lorentz group Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 |
||
---|---|---|---|
Output data | Year: 2020, Volume: 14, Number: 4, Pages: 743-753 Pages count : 11 DOI: 10.1134/S1990478920040122 | ||
Tags | infinitesimal operator; Lorentz group; Lorentz transformation; orthogonal matrix; relativity theory; wave equation | ||
Authors |
|
||
Affiliations |
|
Abstract:
We obtain the two new variants of an explicit parametrization for the general Lorentzgroup. Formulas are given for the direct and inverse four-dimensional Lorentz transformations.These formulas use the orthogonal three- or four-dimensional matrices. We find the infinitesimaloperators of the proper Lorentz group and the multiplication formulas (commutators) of theinfinitesimal operators. The orthogonal three- and four-dimensional matrices are parameterized bylower triangular matrices containing three or six independent parameters.
Cite:
Ostrosablin N.I.
A parametrization of the general Lorentz group
Journal of Applied and Industrial Mathematics. 2020. V.14. N4. P.743-753. DOI: 10.1134/S1990478920040122 Scopus РИНЦ OpenAlex
A parametrization of the general Lorentz group
Journal of Applied and Industrial Mathematics. 2020. V.14. N4. P.743-753. DOI: 10.1134/S1990478920040122 Scopus РИНЦ OpenAlex
Original:
Остросаблин Н.И.
ПАРАМЕТРИЗАЦИЯ ОБЩЕЙ ГРУППЫ ЛОРЕНЦА
Сибирский журнал индустриальной математики. 2020. Т.23. №4 (84). С.114-125. DOI: 10.33048/SIBJIM.2020.23.409 РИНЦ OpenAlex
ПАРАМЕТРИЗАЦИЯ ОБЩЕЙ ГРУППЫ ЛОРЕНЦА
Сибирский журнал индустриальной математики. 2020. Т.23. №4 (84). С.114-125. DOI: 10.33048/SIBJIM.2020.23.409 РИНЦ OpenAlex
Identifiers:
Scopus: | 2-s2.0-85100202958 |
Elibrary: | 44967412 |
OpenAlex: | W3127861407 |
Citing:
Пока нет цитирований