Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms Научная публикация
Журнал |
Journal of Elliptic and Parabolic Equations
ISSN: 2296-9020 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2020, Том: 6, Номер: 1, Страницы: 211-237 Страниц : 27 DOI: 10.1007/s41808-020-00065-x | ||||||||
Ключевые слова | Nonlocal equation; Singular parabolic equation; Strong solutions; Variable nonlinearity | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut-div(|∇u|p[u]-2∇u)=f((x,t),u,l(u))inQT=Ω×(0,T),where Ω⊂ Rd, d≥ 2, is a smooth domain, p[u] = p(l(u)) is a given function with values in the interval [p-,p+]⊂(2dd+2,2), and l(u)=∫Ω|u(x,t)|αdx, α∈ [1, 2], is a functional of the unknown solution. We prove the existence of a strong solution such that ut∈L2(QT),u∈L∞(0,T;W01,2(Ω)),|Dij2u|p[u]∈L1(QT).Conditions of uniqueness of strong solutions are obtained
Библиографическая ссылка:
Antontsev S.
, Shmarev S.
Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms
Journal of Elliptic and Parabolic Equations. 2020. V.6. N1. P.211-237. DOI: 10.1007/s41808-020-00065-x WOS Scopus РИНЦ OpenAlex
Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms
Journal of Elliptic and Parabolic Equations. 2020. V.6. N1. P.211-237. DOI: 10.1007/s41808-020-00065-x WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000528646900001 |
Scopus: | 2-s2.0-85084121184 |
РИНЦ: | 43303743 |
OpenAlex: | W3019924449 |