The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity Научная публикация
Журнал |
Nonlinearity
ISSN: 0951-7715 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 34, Номер: 5, Страницы: 3083-3111 Страниц : 29 DOI: 10.1088/1361-6544/abe51e | ||||||||
Ключевые слова | existence; incompressible fluids with non-constant density; Kelvin-Voigt equations; regularity; uniqueness | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
The classical Kelvin-Voigt equations for incompressible fluids with non-constant density are investigated in this work. To the associated initial-value problem endowed with zero Dirichlet conditions on the assumed Lipschitz-continuous boundary, we prove the existence of weak solutions: velocity and density. We also prove the existence of a unique pressure. These results are valid for d ∈ {2, 3, 4}. In particular, if d ∈ {2, 3}, the regularity of the velocity and density is improved so that their uniqueness can be shown. In particular, the dependence of the regularity of the solutions on the smoothness of the given data of the problem is established.
Библиографическая ссылка:
Antontsev S.N.
, de Oliveira H.B.
, Khompysh K.
The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity
Nonlinearity. 2021. V.34. N5. P.3083-3111. DOI: 10.1088/1361-6544/abe51e WOS Scopus РИНЦ OpenAlex
The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity
Nonlinearity. 2021. V.34. N5. P.3083-3111. DOI: 10.1088/1361-6544/abe51e WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000649646700001 |
Scopus: | 2-s2.0-85107079212 |
РИНЦ: | 46783101 |
OpenAlex: | W3162093851 |