Sciact
  • EN
  • RU

Impulsive p(x,t)-parabolic equations with an infinitesimal initial layer Доклады на конференциях

Язык Английский
Тип доклада Устный
Конференция The 15th Congress of the International Society for Analysis, its Applications, and Computation (ISAAC)
21-25 июл. 2025 , г. Астана
Авторы Sazhenkov Sergey 1,2
Организации
1 Алтайский государственный университет
2 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук

Реферат: We study the multi-dimensional Cauchy--Dirichlet problem for the p(x,t)-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the q(x,t)-growth. The minor term depends on a positive integer parameter n and, as n tends to infinity, converges weakly* to the expression incorporating the Dirac delta-function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta-function, is formed as n tends to infinity, and that the family of regular weak solutions of the original problem converges to the solution of a limit two-scale microscopic-macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads to upscaling of the limit model.
Библиографическая ссылка: Sazhenkov S.
Impulsive p(x,t)-parabolic equations with an infinitesimal initial layer
The 15th Congress of the International Society for Analysis, its Applications, and Computation (ISAAC) 21-25 Jul 2025