Sciact
  • EN
  • RU

Asymptotics of solutions to the problem of fluid outflow from a rectangular duct Научная публикация

Журнал Physics of Fluids
ISSN: 1070-6631
Вых. Данные Год: 2021, Том: 33, Номер статьи : 047106, Страниц : 13 DOI: 10.1063/5.0045260
Авторы Ostapenko Vladimir V. 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090
2 Novosibirsk State University, Novosibirsk 630090, Russia

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0001

Реферат: We investigated the asymptotics of two-dimensional steady solutions simulating the energy-conserving flow in a horizontal duct of finite depth in situations where the flow contains a region spanning the depth of the duct, and a region in which the fluid surface detaches from the ceiling of the duct as a free surface. These asymptotics are constructed using the local hydrostatic approximation, which generalizes the classical long-wave approximation. The initial (zero-order) asymptotics leading to the piecewise constant solutions are obtained from the mass, momentum, and energy conservation laws of the first approximation of shallow water theory. The first-order asymptotics for the liquid depth are constructed using the momentum conservation law of the Green-Nagdi model representing the second approximation of shallow water theory. It is shown that the continuous solution obtained from this asymptotics is in good agreement with the Wilkinson laboratory experiment [D. L. Wilkinson, "Motion of air cavities in long horizontal ducts,"J. Fluid Mech. 118, 109 (1982)] on modeling the energy-conserving steady flow predicted by the classical piecewise constant Benjamin solution [T. B. Benjamin, "Gravity currents and related phenomena,"J. Fluid Mech. 31, 209 (1968)].
Библиографическая ссылка: Ostapenko V.V.
Asymptotics of solutions to the problem of fluid outflow from a rectangular duct
Physics of Fluids. 2021. V.33. 047106 :1-13. DOI: 10.1063/5.0045260 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000638119000002
Scopus: 2-s2.0-85103873702
РИНЦ: 46763162
OpenAlex: W3150707639
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
РИНЦ 2
Web of science 1
Альметрики: