Sciact
  • EN
  • RU

Justification of the Method Of Integral Convergence for Studying the Accuracy of Difference Schemes Научная публикация

Журнал Mathematical Models and Computer Simulations
ISSN: 2070-0482
Вых. Данные Год: 2021, Том: 13, Номер: 6, Страницы: 1028-1037 Страниц : 10 DOI: 10.1134/S207004822106017X
Ключевые слова compact scheme; integrated convergence of difference schemes; Rusanov’s scheme; TVD-scheme; WENO scheme
Авторы Ostapenko V.V. 1 , Khandeeva N.A. 1
Организации
1 Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Информация о финансировании (2)

1 Российский научный фонд 16-11-10033-Продление
2 Министерство науки и высшего образования Российской Федерации FWGG-2021-0001

Реферат: We justified the integral convergence method for studying the accuracy of finite-difference shock-capturing schemes in the numerical simulation of shock waves propagating at variable speed. For this, the order of integral convergence is determined using a series of numerical calculations on a family of nested difference meshes, which makes it possible to simulate a space-continuous difference solution of the corresponding Cauchy problem. This approach is used to study the accuracy of the explicit difference schemes of Rusanov, TVD and WENO, having a higher order of classical approximation, as well as an implicit compact scheme with artificial viscosity of the fourth order of divergence, which has the third order of both classical and weak approximations.
Библиографическая ссылка: Ostapenko V.V. , Khandeeva N.A.
Justification of the Method Of Integral Convergence for Studying the Accuracy of Difference Schemes
Mathematical Models and Computer Simulations. 2021. V.13. N6. P.1028-1037. DOI: 10.1134/S207004822106017X Scopus РИНЦ OpenAlex
Оригинальная: Остапенко В.В. , Хандеева Н.А.
К обоснованию метода интегральной сходимости исследования точности разностных схем сквозного счета
Математическое моделирование. 2021. Т.33. №4. С.45-59. DOI: 10.20948/mm-2021-04-03 РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85122018865
РИНЦ: 47551486
OpenAlex: W4200026278
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 1
РИНЦ 1
Альметрики: