Sciact
  • EN
  • RU

On a compact finite-difference scheme of the third order of weak approximation Full article

Conference 4-Я ВСЕРОССИЙСКАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ "ТЕПЛОФИЗИКА И ФИЗИЧЕСКАЯ ГИДРОДИНАМИКА" СО ШКОЛОЙ МОЛОДЫХ УЧЕНЫХ
15-22 Sep 2019 , Ялта
Journal Journal of Physics: Conference Series
ISSN: 1742-6588
Output data Year: 2019, Volume: 1359, Article number : 012072, Pages count : 6 DOI: 10.1088/1742-6596/1359/1/012072
Authors Ostapenko V V 1,2 , Polunina E I 2 , Khandeeva N A 1,2
Affiliations
1 Lavrentyev Institute of Hydrodynamics, 15 Lavrentyev Ave., Novosibirsk, 630090, Russia
2 Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russia

Funding (1)

1 Российский научный фонд 16-11-10033-Продление

Abstract: The stability and accuracy of compact difference schemes with artificial viscosities of the fourth divergence order are studied. These schemes have a third order both of classical approximation on smooth solutions and weak approximation on discontinuous solutions. As a result of the stability analysis of these schemes in the linear approximation, the optimal values of their viscosity coefficients were obtained. Test calculations are presented to demonstrate the advantages of the new compact scheme compared to the TVD and WENO schemes when calculating discontinuous solutions with shock waves.
Cite: Ostapenko V.V. , Polunina E.I. , Khandeeva N.A.
On a compact finite-difference scheme of the third order of weak approximation
Journal of Physics: Conference Series. 2019. V.1359. 012072 :1-6. DOI: 10.1088/1742-6596/1359/1/012072 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85076475632
Elibrary: 43224333
OpenAlex: W2989795245
Citing:
DB Citing
Elibrary 1
Altmetrics: