Sciact
  • EN
  • RU

Boundary value problem for a global-in-time parabolic equation Научная публикация

Журнал Mathematical Methods in the Applied Sciences
ISSN: 0170-4214
Вых. Данные Год: 2021, Том: 44, Номер: 1, Страницы: 1118-1126 Страниц : 9 DOI: 10.1002/mma.6816
Ключевые слова initial boundary value problem; nonlocal-in-time parabolic equation; solvability; uniqueness
Авторы Starovoitov V.N. 1
Организации
1 Lavrentyev Institute of Hydrodynamics

Информация о финансировании (1)

1 Российский научный фонд
Российский научный фонд
19-11-00069

Реферат: The aim of this paper is to draw attention to an interesting semilinear parabolic equation that arose when describing the chaotic dynamics of a polymermolecule in a liquid. This equation is nonlocal in time and contains a term, called the interaction potential, that depends on the time-integral of the solution over the entire interval of solving the problem. In fact, one needs to know the “future” in order to determine the coefficient in this term, that is, the causality principle is violated. The existence of a weak solution of the initial boundary value problem is proven. The interaction potential satisfies fairly general conditions and can have arbitrary growth at infinity. The uniqueness of this solution is established with restrictions on the length of the considered time interval.
Библиографическая ссылка: Starovoitov V.N.
Boundary value problem for a global-in-time parabolic equation
Mathematical Methods in the Applied Sciences. 2021. V.44. N1. P.1118-1126. DOI: 10.1002/mma.6816 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000561116300001
Scopus: 2-s2.0-85089558764
РИНЦ: 45376102
OpenAlex: W3080247405
Цитирование в БД:
БД Цитирований
Scopus 9
OpenAlex 13
Web of science 10
Альметрики: