Weak Solutions to 2D and 3D Compressible Navier-Stokes Equations in Critical Cases Научная публикация
Сборник | Handbook of Mathematical Analysis in Mechanics
of Viscous Fluids Монография, 2018. Scopus Scopus |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Страницы: 1601-1671 Страниц : 71 DOI: 10.1007/978-3-319-13344-7_75 | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
In this chapter the compressible Navier-Stokes equations with the critical adiabatic exponents are considered. The crucial point in this situation are new estimates of the Radon measure of solutions. These estimates are applied to the boundary value problem for the compressible Navier-Stokes equations with the critical adiabatic exponents. The existence of weak solutions to 2D isothermal problem is proved. The cancelation of concentrations for 3D nonstationary initial-boundary value problem with the critical adiabatic exponent 3/2 is established.
Библиографическая ссылка:
Plotnikov P.I.
, Weigant W.
Weak Solutions to 2D and 3D Compressible Navier-Stokes Equations in Critical Cases
Глава монографии Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. 2018. – C.1601-1671. DOI: 10.1007/978-3-319-13344-7_75 Scopus РИНЦ OpenAlex
Weak Solutions to 2D and 3D Compressible Navier-Stokes Equations in Critical Cases
Глава монографии Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. 2018. – C.1601-1671. DOI: 10.1007/978-3-319-13344-7_75 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85054376103 |
РИНЦ: | 38613061 |
OpenAlex: | W4244752856 |