The energy release rate for non-penetrating crack in poroelastic body by fluid-driven fracture Научная публикация
Журнал |
Mathematics and Mechanics of Solids
ISSN: 1081-2865 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2023, Том: 28, Номер: 2, Страницы: 592-610 Страниц : 19 DOI: 10.1177/10812865221086547 | ||||||
Ключевые слова | asymptotic analysis; contact; crack; energy release rate; hydraulic fracturing; incremental formulation; Lagrangian; path-independent integral; Poroelasticity; shape derivative; variational inequality | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0010 |
Реферат:
A new class of constrained variational problems, which describe fluid-driven cracks (that are pressurized fractures created by pumping fracturing fluids), is considered within the nonlinear theory of coupled poroelastic models stated in the incremental form. The two-phase medium is constituted by solid particles and fluid-saturated pores; it contains a crack subjected to non-penetration condition between the opposite crack faces. The inequality-constrained optimization is expressed as a saddle-point problem with respect to the unknown solid phase displacement, pore pressure, and contact force. Applying the Lagrange multiplier approach and the Delfour–Zolésio theorem, the shape derivative for the corresponding Lagrangian function is derived using rigorous asymptotic methods. The resulting formula describes the energy release rate under irreversible crack perturbations, which is useful for application of the Griffith criterion of quasi-static fracture.
Библиографическая ссылка:
Kovtunenko V.A.
, Lazarev N.P.
The energy release rate for non-penetrating crack in poroelastic body by fluid-driven fracture
Mathematics and Mechanics of Solids. 2023. V.28. N2. P.592-610. DOI: 10.1177/10812865221086547 WOS Scopus РИНЦ OpenAlex
The energy release rate for non-penetrating crack in poroelastic body by fluid-driven fracture
Mathematics and Mechanics of Solids. 2023. V.28. N2. P.592-610. DOI: 10.1177/10812865221086547 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000786644600001 |
Scopus: | 2-s2.0-85129657344 |
РИНЦ: | 48583170 |
OpenAlex: | W4224232676 |