Entropy method for generalized Poisson–Nernst–Planck equations Full article
Journal |
Analysis and Mathematical Physics
ISSN: 1664-2368 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2018, Volume: 8, Number: 4, Pages: 603-619 Pages count : 17 DOI: 10.1007/s13324-018-0257-1 | ||||||
Tags | Electrokinetics; Entropy variables; Fermi–Dirac statistics; Gibbs simplex; Gradient flow; Poisson–Nernst–Planck equations; Well-posedness analysis | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
A proper mathematical model given by nonlinear Poisson–Nernst–Planck (PNP) equations which describe electrokinetics of charged species is considered. The model is generalized with entropy variables associating the pressure and quasi-Fermi electro-chemical potentials in order to adhere to the law of conservation of mass. Based on a variational principle for suitable free energy, the generalized PNP system is endowed with the structure of a gradient flow. The well-posedness theorems for the mixed formulation (using the entropy variables) of the gradient-flow problem are provided within the Gibbs simplex and supported by a-priori estimates of the solution.
Cite:
González Granada J.R.
, Kovtunenko V.A.
Entropy method for generalized Poisson–Nernst–Planck equations
Analysis and Mathematical Physics. 2018. V.8. N4. P.603-619. DOI: 10.1007/s13324-018-0257-1 WOS Scopus РИНЦ OpenAlex
Entropy method for generalized Poisson–Nernst–Planck equations
Analysis and Mathematical Physics. 2018. V.8. N4. P.603-619. DOI: 10.1007/s13324-018-0257-1 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000451394300008 |
Scopus: | 2-s2.0-85057327850 |
Elibrary: | 38199337 |
OpenAlex: | W2898886831 |