Shape Differentiability of Lagrangians and Application to Stokes Problem Научная публикация
Журнал |
SIAM Journal on Control and Optimization
ISSN: 0363-0129 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 56, Номер: 5, Страницы: 3668-3684 Страниц : 17 DOI: 10.1137/17m1125327 | ||||||
Ключевые слова | Constrained minimization; Lagrangian; Primal and dual cone; Primal-dual minimax problem; Shape derivative; Stokes problem; Velocity method | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
A class of convex constrained minimization problems over polyhedral cones for geometry-dependent quadratic objective functions is considered in a functional analysis framework. Shape differentiability of the primal minimization problem needs a bijective property for mapping of the primal cone. This restrictive assumption is relaxed to bijection of the dual cone within the Lagrangian formulation as a primal-dual minimax problem. In this paper, we give results on primal-dual shape sensitivity analysis that extends the class of shape-differentiable problems supported by an explicit formula of the shape derivative. We apply the results to the Stokes problem under mixed Dirichlet—Neumann boundary conditions subject to the divergence-free constraint.
Библиографическая ссылка:
Kovtunenko V.A.
, Ohtsuka K.
Shape Differentiability of Lagrangians and Application to Stokes Problem
SIAM Journal on Control and Optimization. 2018. V.56. N5. P.3668-3684. DOI: 10.1137/17m1125327 WOS Scopus РИНЦ OpenAlex
Shape Differentiability of Lagrangians and Application to Stokes Problem
SIAM Journal on Control and Optimization. 2018. V.56. N5. P.3668-3684. DOI: 10.1137/17m1125327 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000448810200022 |
Scopus: | 2-s2.0-85056107876 |
РИНЦ: | 37218135 |
OpenAlex: | W2886977095 |