Sciact
  • EN
  • RU

Topological optimality condition for the identification of the center of an inhomogeneity Научная публикация

Журнал Inverse Problems
ISSN: 0266-5611
Вых. Данные Год: 2018, Том: 34, Номер: 3, Номер статьи : 035009, Страниц : DOI: 10.1088/1361-6420/aaa997
Ключевые слова asymptotic analysis; inverse problem for inhomogeneous media; topological derivative; topology optimization; zero-order optimality condition
Авторы Cakoni Fioralba 1 , Kovtunenko Victor A 2,3
Организации
1 Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States of America
2 Department of Mathematics, University of Graz, NAWI Graz
3 Siberian Division of the Russian Academy of Sciences, Lavrent’ev Institute of Hydrodynamics

Реферат: The inverse scattering problem for inhomogeneous media is considered within the topology optimization framework. Varying the complex-valued refractive index we derive a zero-order necessary optimality condition in minimizing the L 2 misfit cost functional of the far-field measurement. The topology asymptotic expansion of the optimality condition leads to an imaging operator, which is used to identify the center of the unknown inhomogeneity using few far-field measurements. Numerical tests show high precision and stability in the reconstruction using our optimality condition based imaging both in two and three dimensions.
Библиографическая ссылка: Cakoni F. , Kovtunenko V.A.
Topological optimality condition for the identification of the center of an inhomogeneity
Inverse Problems. 2018. V.34. N3. 035009 . DOI: 10.1088/1361-6420/aaa997 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000424903900002
Scopus: 2-s2.0-85042161442
РИНЦ: 35515534
OpenAlex: W2789839610
Цитирование в БД:
БД Цитирований
Scopus 25
OpenAlex 25
Web of science 21
Альметрики: